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Extended Attributes

# lsattr /etc/passwd /etc/ssl
————————————— e-- /etc/passwd

—————————— I--e-- /Jetc/ssl/certs
* Require support from file system

* Managementvia lsattr, chattr
— Undeletable (u)
— Append only (a)
— Immutability (i)
— Secure deletion (s)
— Compression (c)
— Hashed trees indexing for directories (I)
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POSIX ACLs

Extend UNIX permission model to support fine-
grained access control

$ sudo setfacl -m u:pizzaman:r secret

$ getfacl secret
# file: secret
# owner: root
# group: root

user: :rw-
user:pizzaman:r--
group::---

mask: :r--

other::---
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Why use SUID at all?

* ping sends ICMP packets

— Only privileged programs can access “raw”
sockets

— SUID root solves that problem

* Web server binds to port 80/443

— Privileged ports (<1024) only root can bind to

— SUID root would make the entire web-server run
as root (what’s the problem?)

36



Linux Capabilities

* Linux has a fine-grained notion of privilege
called capabilities

— Not to be confused with actual capabilities

 Partition root privilege into smaller units
— CAP_NET_ADMIN
— CAP_NET_BIND SERVICE
— CAP_NET_RAW
— CAP_KILL
— CAP_SYS_MODULE
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Linux Capabilities

# setcap cap _net bind service=+ep /usr/sbin/httpd
# getcap /usr/sbin/httpd
/usr/sbin/httpd = cap net bind service+ep

# find /usr/bin -exec /sbin/getcap {} \;
/usr/bin/gnome-keyring-daemon = cap_ipc_lock+ep
/usr/bin/traceroute6.iputils = cap_nhet raw+ep

/usr/bin/systemd-detect-virt =
cap_dac_override,cap_sys ptrace+ep
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Shells

# echo $SHELL
/bin/sh

* Shells: the classic interface to UNIX systems
— Interactive REPL environment
— Also, a convenient programming language

* Program execution, pipelining
— Fine-grained control of subprocess environment
— Redirections & pipelining (<, |, and >)

* Many different flavors

— Bourne shell (sh), Bourne again shell (bash), C shell
(csh), Korn shell (ksh)
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The Unix Philosophy

Doug Mcllroy (1978)

(i) Make each program do one thing well. ...

(ii) Expect the output of every program to
become the input to another; as yet
unknown, program. ...

(iii) ...
(iv) ...
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Process System Calls

fork (duplicate current process, create a new process)
exec (replace currently running process with executable)
exit (end process)

wait (wait for a child process)

getpid (get process PID)

getpgrp (get process GID)
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Executing Programs

int execve(
const char *path,
char *const argv[],
char *const envp[]);

* Executing a new program: Invoke the exec()
syscalls

— exec* () replaces the current program with the program
specified as path

— exec*() does not return
— Initializes a new virtual address space

— Invokes 1d-1inux.so. 2, loads shared libs performs
runtime linking (ELF, dynamically linked binaries)

— Invokes interpreter specified in form of
#! /path/to/interpreter
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fork()

Syntax: pid = fork();

Get almost identical copy (child) of the original (parent)

— File descriptors, arguments, memory, stack ... all copied
— Even current program counter

— But not completely identical - why?

Return value from fork call is different:
— 0 in child

— PID > 0 of the child when returning in parent
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fork() cont.

pid t child = fork();
switch (child) {
case -1:
//something went wrong ..
exit(1);
case O:
//I’°m the child
break;
default:
//I°m the parent and the child’s pid is child
break;

¥

« system() wrapper around fork() then exec*()
— Implemented in 1ibc. so not a system call

44



exec()

Change program in process
— i.e. launch a new program that replaces the current one

Several different forms with slightly different syntax

int status;

status = execve(prog, args, env) ;
‘ \ environment
[ ->
-1 on error. name of file variables
char* argsf]
never see this that should command line
if successful be executed arguments ->

char* argsf]

What does execve return?
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Monitoring Programs

pid t waitpid(pid t pid, int* status, int options);

* wait*() family allows parent to check status of

children
— WIFEXITED, WEXITSTATUS
— WIFSIGNALED, WTERMSIG
— WIFSTOPPED, WSTOPSIG
* Performing wait*() is required to clean up

zombie processes
— Otherwise, terminated programs remain in 7Z state
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