DEMO
suid program
setgid directory

Extended Attributes

lsattr /etc/passwd /etc/ssl
————————————— e-- /etc/passwd

—————————— I--e-- /Jetc/ssl/certs
* Require support from file system

* Managementvia lsattr, chattr
— Undeletable (u)
— Append only (a)
— Immutability (i)
— Secure deletion (s)
— Compression (c)
— Hashed trees indexing for directories (I)

31

DEMO
Extended Attributes

POSIX ACLs

Extend UNIX permission model to support fine-
grained access control

$ sudo setfacl -m u:pizzaman:r secret

$ getfacl secret
file: secret
owner: root
group: root

user: :rw-
user:pizzaman:r--
group::---

mask: :r--

other::---

33

DEMO
POSIX ACLs

Why use SUID at all?

* ping sends ICMP packets

— Only privileged programs can access “raw”
sockets

— SUID root solves that problem

* Web server binds to port 80/443

— Privileged ports (<1024) only root can bind to

— SUID root would make the entire web-server run
as root (what’s the problem?)

36

Linux Capabilities

* Linux has a fine-grained notion of privilege
called capabilities

— Not to be confused with actual capabilities

 Partition root privilege into smaller units
— CAP_NET_ADMIN
— CAP_NET_BIND SERVICE
— CAP_NET_RAW
— CAP_KILL
— CAP_SYS_MODULE

37

Linux Capabilities

setcap cap _net bind service=+ep /usr/sbin/httpd
getcap /usr/sbin/httpd
/usr/sbin/httpd = cap net bind service+ep

find /usr/bin -exec /sbin/getcap {} \;
/usr/bin/gnome-keyring-daemon = cap_ipc_lock+ep
/usr/bin/traceroute6.iputils = cap_nhet raw+ep

/usr/bin/systemd-detect-virt =
cap_dac_override,cap_sys ptrace+ep

38

Shells

echo $SHELL
/bin/sh

* Shells: the classic interface to UNIX systems
— Interactive REPL environment
— Also, a convenient programming language

* Program execution, pipelining
— Fine-grained control of subprocess environment
— Redirections & pipelining (<, |, and >)

* Many different flavors

— Bourne shell (sh), Bourne again shell (bash), C shell
(csh), Korn shell (ksh)

39

The Unix Philosophy

Doug Mcllroy (1978)

(i) Make each program do one thing well. ...

(ii) Expect the output of every program to
become the input to another; as yet
unknown, program. ...

(iii) ...
(iv) ...

40

Process System Calls

fork (duplicate current process, create a new process)
exec (replace currently running process with executable)
exit (end process)

wait (wait for a child process)

getpid (get process PID)

getpgrp (get process GID)

41

Executing Programs

int execve(
const char *path,
char *const argv[],
char *const envp[]);

* Executing a new program: Invoke the exec()
syscalls

— exec* () replaces the current program with the program
specified as path

— exec*() does not return
— Initializes a new virtual address space

— Invokes 1d-1inux.so. 2, loads shared libs performs
runtime linking (ELF, dynamically linked binaries)

— Invokes interpreter specified in form of
#! /path/to/interpreter

42

fork()

Syntax: pid = fork();

Get almost identical copy (child) of the original (parent)

— File descriptors, arguments, memory, stack ... all copied
— Even current program counter

— But not completely identical - why?

Return value from fork call is different:
— 0 in child

— PID > 0 of the child when returning in parent

43

fork() cont.

pid t child = fork();
switch (child) {
case -1:
//something went wrong ..
exit(1);
case O:
//I’°m the child
break;
default:
//I°m the parent and the child’s pid is child
break;

¥

« system() wrapper around fork() then exec*()
— Implemented in 1ibc. so not a system call

44

exec()

Change program in process
— i.e. launch a new program that replaces the current one

Several different forms with slightly different syntax

int status;

status = execve(prog, args, env) ;
‘ \ environment
[->
-1 on error. name of file variables
char* argsf]
never see this that should command line
if successful be executed arguments ->

char* argsf]

What does execve return?

45

Monitoring Programs

pid t waitpid(pid t pid, int* status, int options);

* wait*() family allows parent to check status of

children
— WIFEXITED, WEXITSTATUS
— WIFSIGNALED, WTERMSIG
— WIFSTOPPED, WSTOPSIG
* Performing wait*() is required to clean up

zombie processes
— Otherwise, terminated programs remain in 7Z state

46

