
DEMO
suid program

setgid directory

29

Extended Attributes

lsattr /etc/passwd /etc/ssl
-------------e-- /etc/passwd
----------I--e-- /etc/ssl/certs
• Require support from file system
• Management via lsattr, chattr
– Undeletable (u)
– Append only (a)
– Immutability (i)
– Secure deletion (s)
– Compression (c)
– Hashed trees indexing for directories (I)

31

DEMO
Extended Attributes

32

POSIX ACLs

Extend UNIX permission model to support fine-
grained access control

$ sudo setfacl –m u:pizzaman:r secret
$ getfacl secret

file: secret
owner: root
group: root
user::rw-
user:pizzaman:r--
group::---
mask::r--
other::---

 33

DEMO
POSIX ACLs

34

Why use SUID at all?

• ping sends ICMP packets

– Only privileged programs can access “raw”
sockets

– SUID root solves that problem

• Web server binds to port 80/443

– Privileged ports (<1024) only root can bind to

– SUID root would make the entire web-server run
as root (what’s the problem?)

36

Linux Capabilities

• Linux has a fine-grained notion of privilege
called capabilities

– Not to be confused with actual capabilities

• Partition root privilege into smaller units

– CAP_NET_ADMIN

– CAP_NET_BIND_SERVICE

– CAP_NET_RAW

– CAP_KILL

– CAP_SYS_MODULE

37

Linux Capabilities

setcap cap_net_bind_service=+ep /usr/sbin/httpd

getcap /usr/sbin/httpd

/usr/sbin/httpd = cap_net_bind_service+ep

find /usr/bin -exec /sbin/getcap {} \;

/usr/bin/gnome-keyring-daemon = cap_ipc_lock+ep

/usr/bin/traceroute6.iputils = cap_net_raw+ep

/usr/bin/systemd-detect-virt =
 cap_dac_override,cap_sys_ptrace+ep

38

Shells

echo $SHELL
/bin/sh

• Shells: the classic interface to UNIX systems

– Interactive REPL environment
– Also, a convenient programming language

• Program execution, pipelining
– Fine-grained control of subprocess environment
– Redirections & pipelining (<,|, and >)

• Many different flavors
– Bourne shell (sh), Bourne again shell (bash), C shell

(csh), Korn shell (ksh)

39

The Unix Philosophy

Doug McIlroy (1978)

(i) Make each program do one thing well. …

(ii)Expect the output of every program to
become the input to another, as yet
unknown, program. …

(iii) …

(iv) …

40

Process System Calls

• fork (duplicate current process, create a new process)

• exec (replace currently running process with executable)

• exit (end process)

• wait (wait for a child process)

• getpid (get process PID)

• getpgrp (get process GID)

41

Executing Programs
int execve(

const char *path,
char *const argv[],
char *const envp[]);

• Executing a new program: Invoke the exec()
syscalls
– exec*() replaces the current program with the program

specified as path
– exec*() does not return
– Initializes a new virtual address space
– Invokes ld-linux.so.2, loads shared libs performs

runtime linking (ELF, dynamically linked binaries)
– Invokes interpreter specified in form of

#! /path/to/interpreter

42

fork()

Syntax: pid = fork();

Get almost identical copy (child) of the original (parent)

– File descriptors, arguments, memory, stack … all copied

– Even current program counter

– But not completely identical - why?

Return value from fork call is different:

– 0 in child

– PID > 0 of the child when returning in parent

43

fork() cont.

pid_t child = fork();
switch (child) {
 case -1:
 //something went wrong …
 exit(1);
 case 0:
 //I’m the child
 break;
 default:
 //I’m the parent and the child’s pid is child
 break;
}

• system() wrapper around fork() then exec*()
– Implemented in libc.so not a system call

44

exec()

Change program in process
– i.e., launch a new program that replaces the current one

Several different forms with slightly different syntax
i n t s t a t u s ;

s t a t u s = e x e c v e (p r o g , a r g s , e n v) ;

-1 on error.

never see this

if successful

name of file

that should

be executed
command line

arguments ->

char* args[]

environment

variables ->

char* args[]

45

What does execve return?

Monitoring Programs

pid_t waitpid(pid_t pid, int* status, int options);

• wait*() family allows parent to check status of
children

– WIFEXITED, WEXITSTATUS

– WIFSIGNALED, WTERMSIG

– WIFSTOPPED, WSTOPSIG

• Performing wait*() is required to clean up
zombie processes

– Otherwise, terminated programs remain in Z state

46

