
Monitoring Programs

pid_t waitpid(pid_t pid, int* status, int options);

• wait*() family allows parent to check status of
children

– WIFEXITED, WEXITSTATUS

– WIFSIGNALED, WTERMSIG

– WIFSTOPPED, WSTOPSIG

• Performing wait*() is required to clean up
zombie processes

– Otherwise, terminated programs remain in Z state

46

DEMO
The Walking Dead

55

Process Hierarchy

#pstree –p

56

systemd(1)-+-/usr/bin/termin(15927)-+-bash(15934)---sudo(15936)---less(15938)
 | |-bash(16221)-+-less(4553)
 | | `-objdump(4552)
 | |-bash(21840)---pstree(4589)
 | |-bash(21925)---evince(24646)-+-{EvJobScheduler}(24663)
 | | |-{dconf worker}(24653)
 | | |-{gdbus}(24647)
 | | `-{gmain}(24652)
 | |-bash(22574)---ssh(4333)
 | |-gnome-pty-helpe(15933)
 | |-{gdbus}(15932)
 | `-{gmain}(15935)
 |-/usr/bin/termin(27360)-+-bash(12412)
 | |-bash(21364)
 | |-bash(27367)
 | |-bash(27369)
 | |-bash(29751)
 | |-bash(30815)
 | |-bash(30823)
 | |-gnome-pty-helpe(27366)
 | |-{gdbus}(27365)
 | `-{gmain}(27368)

PATH Modification
$ echo $PATH
/home/pizzaman/bin:/usr/local/bin:/usr/bin:/bin
$ which python
/usr/bin/python
$ ls -l /usr/bin/python
lrwxrwxrwx 1 root root 9 Jul 11 19:22 /usr/bin/python ->
python2.7

• Environment variables set important shell parameters
• PATH contains colon-delimited set of directories to search for

commands

• Similar attack applies to HOME

57

What happens if you can set PATH for a privileged program?

IFS Modification

$ for f in blah0 blah1 blah2; do echo $f; done

blah0 blah1 blah2

$ IFS='b'

$ for f in blah0 blah1 blah2; do echo $f; done

 lah0 lah1 lah2

• IFS (internal field separator) is used to parse
tokens

• Classic attack is to set IFS=“/”

58

What happens when user executes /bin/ls

preserve Attack

• /usr/lib/preserve was SUID root

• Called “/bin/mail” when vi crashed to
preserve modifications to the file

• Attack

1. Change IFS to “/”

2. Create bin as link to /bin/sh

3. Kill vi

4. Profit!

59

Shell Injection

Shell interprets number of special characters
– ; … Separate distinct commands

– & … Execute in the background

– | … Pipe output as input to another command

– > … Redirect output to a file

– # … Comment

– $var … Reference variable var

– x && y … If x, then y

– x || y … x or y

60

Shell Injection

$ cat vuln.sh
#!/bin/sh
cmd="ls $1"
sh -c "$cmd"

• Injecting special characters into commands
can modify intended behavior

– Applies to command line and C functions that
perform shell interpretation (e.g., system())

• Possible whenever unsanitized, untrusted
input flows to a shell invocation

61

DEMO
Shell Injection

bash -r

62

Shell Attacks

system(char *cmd)

– Invokes external commands via shell

– Executes cmd by calling /bin/sh –c cmd

– Can make binary program vulnerable to shell
attacks

– Sanitize user input!

popen(char *cmd, char *type)

– Forks a process, opens a pipe, and invokes shell
for cmd

66

Startup File Injection

Shells typically source scripts at startup

– /etc/profile, /etc/bash.bashrc,
$HOME/.bash_profile

– $ wc -l ~/.bashrc
115 /home/pizzaman/.bashrc

Injecting commands in startup files can be
devastating

– How often do you inspect yours?

67

Defending Against Shell Attacks

• Restricted shells

– Invoked using –r

– Disallows SHELL, PATH, ENV modifications,
chdir, …

• Stripping or escaping special characters

– s/;|\&|\|…//g

• Parsing arguments and avoiding shell
interpretation

– execve() instead of system()

68

DEMO
system()

69

File Descriptor Attacks

• SUID program opens file & exec process
– Sometimes under user control

• On-execute flag
– If close-on-exec flag is not set (default), then new process

inherits file descriptor
– Avenue for attack

• Linux Perl 5.6.0
– Perl getpwuid() leaves /etc/shadow open (June 2002)
– Problem for Apache with mod_perl

• Defense: close prior to exec untrusted programs
– Manually
– Or, automatically using fcntl(fd, F_SETFD, FD_CLOEXEC)

70

Resource Limits

• Linux systems have built-in mechanisms for
enforcing quotas
– Hard limits can never be exceeded

– Soft limits can be temporarily exceeded

– Can be defined per mount point

• File system limits (quotas)
– Restricts max allocations of storage blocks and inodes

– man quota

• Process limits
– Max # of child process, open file descriptors, etc.

• Set with limits.conf, ulimit, setrlimit()

71

ulimit -a
$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 62353
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 65536
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 62353
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

72

Resource Limits & Isolation

• Many security solutions are built on
concepts of isolation and limiting access to
resources
– Virtual memory (provides isolation of memory

between processes)

– chroot (isolation between “file systems”)

– Namespaces (isolation for many different system
aspects)

– Virtual machines (isolation between multiple OS
kernels)

73

chroot

• Set a new root directory for a subtree of
processes

• Attempts to ensure that processes cannot
see “outside” of their root

• Found to be a weak security boundary, as
there are many ways to circumvent it

74

Control Groups (cgroups)

• Limit, account for, and isolate resource
usage of a collection of processes

– CPU

– Memory

– disk I/O

– network

– etc.

• Supported by the Linux kernel since 2008

75

Namespaces

• Groups of processes that cannot “see” resources in other
groups
– PID

(same PID can be used in different namespaces)
– Network

(multiple network stacks possible)
– User namespaces

(same UID can belong to different users in different
namespaces)

– Mount
– etc.

• How to make a new namespace?
– Ask the OS to put a process into a new namespace (i.e., system

calls)

76

cgroups + namespaces = containers

• By combining cgroups with namespaces we
can effectively isolate groups of processes
from one-another

– Docker

– LXC (Linux containers)

– etc.

• Remaining attack surface?

– The host’s system call interface

– Fairly big (> 330 system calls on modern Linux)

77

Virtual Machines

• Attack surface of containers might be to big

• Instead run entire copies of operating systems
(incl. kernels) in isolation -> Virtual Machines

• Hardware support makes it possible to run
multiple kernels on the same CPU
– 1 Virtual Machine Montior (VMM, Hypervisor)

– Multiple guest VMs

• Remaining attack surface, limited
communication channels between the guest
and the hypervisor

78

Shared Libraries

Most programs are dynamically linked
against shared libraries
– Collection of (related) object files
– Included into (linked) program as needed
– Form of code reuse
– Functions & data referenced through PLT, GOT

Interaction with VM copy-on-write
– Multiple processes share a single library copy
– Library pages mapped into multiple virtual address

spaces from single physical copy

Check binaries with ldd

79

Shared Libraries

Static shared library
– Address binding at link-time
– Not very flexible when library changes
– Code is fast

Dynamic shared library
– Address binding at load-time
– Uses procedure linkage table (PLT) & global offset table (GOT)
– Code is slower (indirection) – but optimized
– Loading is slow (dynamic linker binds at run-time)
– Linux: .so Windows: .dll files

PLT and GOT entries are popular attack targets
– More when discussing buffer overflows

80

Shared Libraries
$ ldd /usr/bin/vim

 linux-vdso.so.1 (0x00007fffec1fe000)

 libgtk-x11-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgtk-x11-2.0.so.0

 libgdk-x11-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgdk-x11-2.0.so.0

 libgdk_pixbuf-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgdk_pixbuf-2.0.so.0

 libXt.so.6 => /usr/lib/x86_64-linux-gnu/libXt.so.6 (0x00007fb0d8b0c000)

 libX11.so.6 => /usr/lib/x86_64-linux-gnu/libX11.so.6 (0x00007fb0d87c9000)

 libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fb0d84c8000)

 libtinfo.so.5 => /lib/x86_64-linux-gnu/libtinfo.so.5 (0x00007fb0d829d000)

 libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007fb0d8079000)

 libacl.so.1 => /lib/x86_64-linux-gnu/libacl.so.1 (0x00007fb0d7e70000)

 libgpm.so.2 => /usr/lib/x86_64-linux-gnu/libgpm.so.2 (0x00007fb0d7c69000)

 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fb0d7a65000)

 liblua5.2.so.0 => /usr/lib/x86_64-linux-gnu/liblua5.2.so.0

 libperl.so.5.20 => /usr/lib/x86_64-linux-gnu/libperl.so.5.20

 … 117 libraries total

81

Shared Libraries

Search paths

– Default /lib, /usr/lib

– Extend via /etc/ld.so.conf[.d/*]

– Or, LD_LIBRARY_PATH (environment variable)

ELF linker also allows preloading

– Override system library with own version

– LD_PRELOAD environment variable

– Possible security hazard – How so?

– Now disabled for SUID programs

82

Race Conditions

• Race conditions can occur if programs depend on
(unguaranteed) sequence or timing of operations
– Often arise in multithreaded or distributed systems

• TOCTTOU (time of check to time of use)
– Security vulnerability resulting in changes in system state

between predicate evaluation and use of the predicate result
– Requires precise timing by the attacker, or use of algorithmic

complexity attacks (e.g., filesystem mazes)

• Common TOCTTOU examples
– Checking whether file can be accessed, then opening the file
– mktemp() race between checking existence of temporary file

and opening it

83

File Access TOCTTOU

Vulnerable code (setuid program)
1 if (access(“file”, R_OK)) {

2 exit(1);

3 }

4 int fd = open(“file”, O_RDONLY);

5 read(fd, buf, sizeof(buf));

Attack
symlink(“/etc/shadow”,”file”)

After program executed line 1 but before it executes line 4

84

Signals

Signal
– Simple form of interrupt
– Asynchronous notification
– Can happen anywhere for process in user space
– Used to deliver segfault, CTRL-C, etc.
– kill command

Signal handling
– Process can install signal handlers
– When no handler is present, default behavior

• Ignore or kill process

– Possible to catch all signals except SIGKILL (9)

85

Signal Examples

SIGSEGV Segmentation violation due to an invalid virtual
memory access

SIGPIPE Process attempts to write to an unconnected pipe
or socket

SIGALRM Issued when a timer elapses

SIGSTOP Pauses execution of a process

SIGKILL Terminates execution, cannot be caught or ignored

SIGINT Interrupts process, e.g., using CTRL-C

86

Signals

Easy to mishandle  security issues
– Code must be re-entrant

– Atomic modifications

– No updates to global data

– Beware of unsafe library/system calls

– Examples
wu-ftpd 2001, sendmail 2001/2006, stunnel 2003, ssh 2006

Secure signals
– Write handler as simple as possible

– Block signals in handler

87

Debugging

• UNIX provides the ptrace API for debugging
processes
– Allows programs to control execution of other

programs, read/write virtual memory (code and
data)

• Violates process isolation, so restrictions apply
– Must be superuser, or possess same UID

• Kernel records debugger as a special, second
tracing parent process
– Can only have one trace parent at any given time
– Can be used to implement a form of evasion

88

Debug Evasion

Linux debugger check
parent = getpid()
if (!(child = fork())) {
 if (ptrace(PTRACE_ATTACH,parent,0 ,0) == -1)
 //debugger already present for parent
}

Windows PEB debugger check
mov eax, fs:[0x30]
mov eax, byte[eax+2]
test eax, eax
jne .detected_debugger

89

Questions?

90

END

91

