
Monitoring Programs 

pid_t waitpid(pid_t pid, int* status, int options); 

 

• wait*() family allows parent to check status of 
children 

– WIFEXITED, WEXITSTATUS 

– WIFSIGNALED, WTERMSIG 

– WIFSTOPPED, WSTOPSIG 

• Performing wait*() is required to clean up 
zombie processes 

– Otherwise, terminated programs remain in Z state 
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DEMO 
The Walking Dead 
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Process Hierarchy 

#pstree –p 
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systemd(1)-+-/usr/bin/termin(15927)-+-bash(15934)---sudo(15936)---less(15938) 
           |                        |-bash(16221)-+-less(4553) 
           |                        |             `-objdump(4552) 
           |                        |-bash(21840)---pstree(4589) 
           |                        |-bash(21925)---evince(24646)-+-{EvJobScheduler}(24663) 
           |                        |                             |-{dconf worker}(24653) 
           |                        |                             |-{gdbus}(24647) 
           |                        |                             `-{gmain}(24652) 
           |                        |-bash(22574)---ssh(4333) 
           |                        |-gnome-pty-helpe(15933) 
           |                        |-{gdbus}(15932) 
           |                        `-{gmain}(15935) 
           |-/usr/bin/termin(27360)-+-bash(12412) 
           |                        |-bash(21364) 
           |                        |-bash(27367) 
           |                        |-bash(27369) 
           |                        |-bash(29751) 
           |                        |-bash(30815) 
           |                        |-bash(30823) 
           |                        |-gnome-pty-helpe(27366) 
           |                        |-{gdbus}(27365) 
           |                        `-{gmain}(27368) 



PATH Modification 
$ echo $PATH 
/home/pizzaman/bin:/usr/local/bin:/usr/bin:/bin 
$ which python 
/usr/bin/python 
$ ls -l /usr/bin/python               
lrwxrwxrwx 1 root root 9 Jul 11 19:22 /usr/bin/python -> 
python2.7 

 
• Environment variables set important shell parameters 
• PATH contains colon-delimited set of directories to search for 

commands 
 
 

• Similar attack applies to HOME 
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What happens if you can set PATH for a privileged program? 



IFS Modification 

$ for f in blah0 blah1 blah2; do echo $f; done 

blah0 blah1 blah2 

$ IFS='b' 

$ for f in blah0 blah1 blah2; do echo $f; done 

 lah0  lah1  lah2 

 

• IFS (internal field separator) is used to parse 
tokens 

• Classic attack is to set IFS=“/” 
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What happens when user executes /bin/ls 



preserve Attack 

• /usr/lib/preserve was SUID root 

• Called “/bin/mail” when vi crashed to 
preserve modifications to the file 

• Attack 

1. Change IFS to “/” 

2. Create bin as link to /bin/sh 

3. Kill vi 

4. Profit! 
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Shell Injection 

Shell interprets number of special characters 
– ; … Separate distinct commands 

– & … Execute in the background 

– | … Pipe output as input to another command 

– > … Redirect output to a file 

– # … Comment 

– $var … Reference variable var 

– x && y … If x, then y 

– x || y … x or y 
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Shell Injection 

$ cat vuln.sh 
#!/bin/sh 
cmd="ls $1" 
sh -c "$cmd" 

• Injecting special characters into commands 
can modify intended behavior 

– Applies to command line and C functions that 
perform shell interpretation (e.g., system()) 

• Possible whenever unsanitized, untrusted 
input flows to a shell invocation 
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DEMO 
Shell Injection 

bash -r 
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Shell Attacks 

system(char *cmd) 

– Invokes external commands via shell 

– Executes cmd by calling /bin/sh –c cmd 

– Can make binary program vulnerable to shell 
attacks 

– Sanitize user input! 

popen(char *cmd, char *type) 

– Forks a process, opens a pipe, and invokes shell 
for cmd 
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Startup File Injection 

Shells typically source scripts at startup 

– /etc/profile, /etc/bash.bashrc, 
$HOME/.bash_profile 

– $ wc -l ~/.bashrc 
115 /home/pizzaman/.bashrc 

 

Injecting commands in startup files can be 
devastating 

– How often do you inspect yours? 
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Defending Against Shell Attacks 

• Restricted shells 

– Invoked using –r 

– Disallows SHELL, PATH, ENV modifications, 
chdir, …  

• Stripping or escaping special characters 

– s/;|\&|\|…//g 

• Parsing arguments and avoiding shell 
interpretation 

– execve() instead of system() 
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DEMO 
system() 
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File Descriptor Attacks 

• SUID program opens file & exec process 
– Sometimes under user control 

• On-execute flag 
– If close-on-exec flag is not set (default), then new process 

inherits file descriptor 
– Avenue for attack 

• Linux Perl 5.6.0 
– Perl getpwuid() leaves /etc/shadow open (June 2002) 
– Problem for Apache with mod_perl 

• Defense: close prior to exec untrusted programs 
– Manually 
– Or, automatically using fcntl(fd, F_SETFD, FD_CLOEXEC) 
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Resource Limits 

• Linux systems have built-in mechanisms for 
enforcing quotas 
– Hard limits can never be exceeded 

– Soft limits can be temporarily exceeded 

– Can be defined per mount point 

• File system limits (quotas) 
– Restricts max allocations of storage blocks and inodes 

– man quota 

• Process limits 
– Max # of child process, open file descriptors, etc. 

• Set with limits.conf, ulimit, setrlimit() 
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ulimit -a 
$ ulimit -a 
core file size          (blocks, -c) 0 
data seg size           (kbytes, -d) unlimited 
scheduling priority             (-e) 0 
file size               (blocks, -f) unlimited 
pending signals                 (-i) 62353 
max locked memory       (kbytes, -l) 64 
max memory size         (kbytes, -m) unlimited 
open files                      (-n) 65536 
pipe size            (512 bytes, -p) 8 
POSIX message queues     (bytes, -q) 819200 
real-time priority              (-r) 0 
stack size              (kbytes, -s) 8192 
cpu time               (seconds, -t) unlimited 
max user processes              (-u) 62353 
virtual memory          (kbytes, -v) unlimited 
file locks                      (-x) unlimited 
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Resource Limits & Isolation 

• Many security solutions are built on 
concepts of isolation and limiting access to 
resources 
– Virtual memory (provides isolation of memory 

between processes) 

– chroot (isolation between “file systems”) 

– Namespaces (isolation for many different system 
aspects) 

– Virtual machines (isolation between multiple OS 
kernels) 
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chroot 

• Set a new root directory for a subtree of 
processes 

• Attempts to ensure that processes cannot 
see “outside” of their root 

• Found to be a weak security boundary, as 
there are many ways to circumvent it 
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Control Groups (cgroups) 

• Limit, account for, and isolate resource 
usage of a collection of processes 

– CPU 

– Memory 

– disk I/O 

– network 

– etc. 

• Supported by the Linux kernel since 2008 
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Namespaces 

• Groups of processes that cannot “see” resources in other 
groups 
– PID  

(same PID can be used in different namespaces) 
– Network  

(multiple network stacks possible) 
– User namespaces  

(same UID can belong to different users in different 
namespaces) 

– Mount 
– etc. 

• How to make a new namespace? 
– Ask the OS to put a process into a new namespace (i.e., system 

calls) 
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cgroups + namespaces = containers 

• By combining cgroups with namespaces we 
can effectively isolate groups of processes 
from one-another 

– Docker 

– LXC (Linux containers) 

– etc. 

• Remaining attack surface? 

– The host’s system call interface 

– Fairly big (> 330 system calls on modern Linux) 
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Virtual Machines 

• Attack surface of containers might be to big 

• Instead run entire copies of operating systems 
(incl. kernels) in isolation -> Virtual Machines 

• Hardware support makes it possible to run 
multiple kernels on the same CPU 
– 1 Virtual Machine Montior (VMM, Hypervisor) 

– Multiple guest VMs 

• Remaining attack surface, limited 
communication channels between the guest 
and the hypervisor 
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Shared Libraries 

Most programs are dynamically linked 
against shared libraries 
– Collection of (related) object files 
– Included into (linked) program as needed 
– Form of code reuse 
– Functions & data referenced through PLT, GOT 

Interaction with VM copy-on-write 
– Multiple processes share a single library copy 
– Library pages mapped into multiple virtual address 

spaces from single physical copy 

Check binaries with ldd 
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Shared Libraries 

Static shared library 
– Address binding at link-time 
– Not very flexible when library changes 
– Code is fast 

Dynamic shared library 
– Address binding at load-time 
– Uses procedure linkage table (PLT) & global offset table (GOT) 
– Code is slower (indirection) – but optimized 
– Loading is slow (dynamic linker binds at run-time) 
– Linux: .so Windows: .dll files 

PLT and GOT entries are popular attack targets 
– More when discussing buffer overflows 
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Shared Libraries 
$ ldd /usr/bin/vim  

     linux-vdso.so.1 (0x00007fffec1fe000) 

 libgtk-x11-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgtk-x11-2.0.so.0 

 libgdk-x11-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgdk-x11-2.0.so.0 

 libgdk_pixbuf-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgdk_pixbuf-2.0.so.0 

 libXt.so.6 => /usr/lib/x86_64-linux-gnu/libXt.so.6 (0x00007fb0d8b0c000) 

 libX11.so.6 => /usr/lib/x86_64-linux-gnu/libX11.so.6 (0x00007fb0d87c9000) 

 libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fb0d84c8000) 

 libtinfo.so.5 => /lib/x86_64-linux-gnu/libtinfo.so.5 (0x00007fb0d829d000) 

 libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007fb0d8079000) 

 libacl.so.1 => /lib/x86_64-linux-gnu/libacl.so.1 (0x00007fb0d7e70000) 

 libgpm.so.2 => /usr/lib/x86_64-linux-gnu/libgpm.so.2 (0x00007fb0d7c69000) 

 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fb0d7a65000) 

 liblua5.2.so.0 => /usr/lib/x86_64-linux-gnu/liblua5.2.so.0 

 libperl.so.5.20 => /usr/lib/x86_64-linux-gnu/libperl.so.5.20 

 … 117 libraries total 
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Shared Libraries 

Search paths 

– Default /lib, /usr/lib 

– Extend via /etc/ld.so.conf[.d/*] 

– Or, LD_LIBRARY_PATH (environment variable) 

ELF linker also allows preloading 

– Override system library with own version 

– LD_PRELOAD environment variable 

– Possible security hazard – How so? 

– Now disabled for SUID programs 
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Race Conditions 

• Race conditions can occur if programs depend on 
(unguaranteed) sequence or timing of operations 
– Often arise in multithreaded or distributed systems 

• TOCTTOU (time of check to time of use) 
– Security vulnerability resulting in changes in system state 

between predicate evaluation and use of the predicate result 
– Requires precise timing by the attacker, or use of algorithmic 

complexity attacks (e.g., filesystem mazes) 

• Common TOCTTOU examples 
– Checking whether file can be accessed, then opening the file 
– mktemp() race between checking existence of temporary file 

and opening it 
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File Access TOCTTOU 

Vulnerable code (setuid program) 
1 if (access(“file”, R_OK)) { 

2   exit(1); 

3 } 

4 int fd = open(“file”, O_RDONLY); 

5 read(fd, buf, sizeof(buf)); 

 

Attack 
symlink(“/etc/shadow”,”file”) 

After program executed line 1 but before it executes line 4 
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Signals 

Signal 
– Simple form of interrupt 
– Asynchronous notification 
– Can happen anywhere for process in user space 
– Used to deliver segfault, CTRL-C, etc. 
– kill command 

Signal handling 
– Process can install signal handlers 
– When no handler is present, default behavior 

• Ignore or kill process 

– Possible to catch all signals except SIGKILL (9) 
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Signal Examples 

SIGSEGV Segmentation violation due to an invalid virtual 
memory access 

SIGPIPE Process attempts to write to an unconnected pipe 
or socket 

SIGALRM Issued when a timer elapses 

SIGSTOP Pauses execution of a process 

SIGKILL Terminates execution, cannot be caught or ignored 

SIGINT Interrupts process, e.g., using CTRL-C 
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Signals 

Easy to mishandle  security issues 
– Code must be re-entrant 

– Atomic modifications 

– No updates to global data 

– Beware of unsafe library/system calls 

– Examples 
wu-ftpd 2001, sendmail 2001/2006, stunnel 2003, ssh 2006 

Secure signals 
– Write handler as simple as possible 

– Block signals in handler 
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Debugging 

• UNIX provides the ptrace API for debugging 
processes 
– Allows programs to control execution of other 

programs, read/write virtual memory (code and 
data) 

• Violates process isolation, so restrictions apply 
– Must be superuser, or possess same UID 

• Kernel records debugger as a special, second 
tracing parent process 
– Can only have one trace parent at any given time 
– Can be used to implement a form of evasion 
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Debug Evasion 

Linux debugger check 
parent = getpid() 
if (!(child = fork())) { 
  if (ptrace(PTRACE_ATTACH,parent,0 ,0) == -1) 
    //debugger already present for parent 
} 

 

Windows PEB debugger check 
mov eax, fs:[0x30] 
mov eax, byte[eax+2] 
test eax, eax 
jne .detected_debugger 
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Questions? 
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END 
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