Monitoring Programs

pid t waitpid(pid t pid, int* status, int options);

* wait*() family allows parent to check status of

children
— WIFEXITED, WEXITSTATUS
— WIFSIGNALED, WTERMSIG
— WIFSTOPPED, WSTOPSIG
* Performing wait*() is required to clean up

zombie processes
— Otherwise, terminated programs remain in 7Z state

46

DEMO
The Walking Dead

Process Hierarchy

#pstree -p

systemd(1)-+-/usr/bin/termin(15927)-+-bash(15934)---sudo(15936)---less(15938)
| |-bash(16221)-+-less(4553)

| | “-objdump(4552)

| |-bash(21840)---pstree(4589)

| |-bash(21925)---evince(24646)-+-{EvjobScheduler}(24663)

| | |-{dconf worker}(24653)

| | |-{gdbus}(24647)

| | "-{gmain}(24652)

| |-bash(22574)---ssh(4333)

| |-gnome-pty-helpe(15933)

| |-{gdbus}(15932)

| "-{gmain}(15935)

|-/usr/bin/termin(27360)-+-bash(12412)

| |-bash(21364)

| |-bash(27367)

| |-bash(27369)

| |-bash(29751)

| |-bash(30815)

| |-bash(30823) 56

|

Il ~3vA1vvmn vt vr MW AIAARCD 7N

PATH Modification

$ echo $PATH
/home/pizzaman/bin:/usr/local/bin:/usr/bin:/bin
$ which python

/usr/bin/python

$ 1s -1 /usr/bin/python

lrwxrwxrwx 1 root root 9 Jul 11 19:22 /usr/bin/python ->
python2.7

* Environment variables set important shell parameters

e PATH contains colon-delimited set of directories to search for
commands

What happens if you can set PATH for a privileged program?

* Similar attack applies to HOME

57

IFS Modification

$ for £ in blah® blahl blah2; do echo $f; done
blah® blahl blah2

$ IFS='b"

$ for £ in blaho blahl blah2; do echo $f; done
1lah® 1ahl 1ah2

* IFS (internal field separator) is used to parse
tokens

* Classic attack is to set IFS="/"

What happens when user executes /bin/1s

58

preserve Attack

 /usr/lib/preserve was SUID root

e Called “/bin/mail” when vi crashed to
preserve modifications to the file

e Attack

1. Change IFSto “/”
. Createbinaslinkto /bin/sh

2
3. Kill vi
4. Profit!

59

Shell Injection

Shell interprets number of special characters
— ; ... Separate distinct commands

— & ... Execute in the background

— | ... Pipe output as input to another command

— > ... Redirect output to a file

— # ... Comment

— $var ... Reference variable var

— X && y ...Ifx, theny

—x || y..xory

60

Shell Injection

$ cat vuln.sh

#!1/bin/sh

cmd="1s $1"

sh -c "$cmd"

* Injecting special characters into commands
can modify intended behavior
— Applies to command line and C functions that

perform shell interpretation (e.g., system())

* Possible whenever unsanitized, untrusted
input flows to a shell invocation

61

DEMO

Shell Injection
bash -r

Shell Attacks

system(char *cmd)
— Invokes external commands via shell
— Executes cmd by calling /bin/sh -c cmd

— Can make binary program vulnerable to shell
attacks

— Sanitize user input!
popen(char *cmd, char *type)

— Forks a process, opens a pipe, and invokes shell
for cmd

66

Startup File Injection

Shells typically source scripts at startup

— /etc/profile, /etc/bash.bashrc,
$HOME/ .bash _profile

—$% wc -1 ~/.bashrc
115 /home/pizzaman/.bashrc

Injecting commands in startup files can be
devastating

— How often do you inspect yours?

67

Defending Against Shell Attacks

e Restricted shells
— Invoked using -r

— Disallows SHELL, PATH, ENV modifications,
chdir, ...

* Stripping or escaping special characters
—s/i\&[\|...//8

* Parsing arguments and avoiding shell
interpretation

— execve() instead of system()

68

DEMO
system()

File Descriptor Attacks

SUID program opens file & exec process
— Sometimes under user control

On-execute flag

— If close-on-exec flag is not set (default), then new process
inherits file descriptor

— Avenue for attack

Linux Perl 5.6.0

— Perl getpwuid() leaves /etc/shadow open (June 2002)
— Problem for Apache with mod _perl

Defense: close prior to exec untrusted programs

— Manually
— Or, automatically using fcntl(fd, F_SETFD, FD_CLOEXEC)

70

Resource Limits

Linux systems have built-in mechanisms for
enforcing quotas

— Hard limits can never be exceeded
— Soft limits can be temporarily exceeded
— Can be defined per mount point

File system limits (quotas)

— Restricts max allocations of storage blocks and inodes
— man quota

Process limits

— Max # of child process, open file descriptors, etc.

Set with 1imits.conf, ulimit, setrlimit()

71

$ ulimit -a

core file size

data seg size
scheduling priority
file size

pending signals

max locked memory
max memory size
open files

pipe size

POSIX message queues
real-time priority
stack size

cpu time

max user processes
virtual memory

file locks

ulimit -a

(blocks, -c)
(kbytes, -d)
(-e)
(blocks, -f)
(-1)
(kbytes, -1)
(kbytes, -m)
(-n)

(512 bytes, -p)

(bytes, -q)
(-r)

(kbytes, -s)
(seconds, -t)
(-u)

(kbytes, -v)
(-x)

%)
unlimited
%)
unlimited
62353

64
unlimited
65536

8

819200

%)

8192
unlimited
62353
unlimited
unlimited

72

Resource Limits & Isolation

* Many security solutions are built on
concepts of isolation and limiting access to
resources

— Virtual memory (provides isolation of memory
between processes)

— chroot (isolation between “file systems”)

— Namespaces (isolation for many different system
aspects)

— Virtual machines (isolation between multiple OS
kernels)

73

chroot

* Set a new root directory for a subtree of
processes

» Attempts to ensure that processes cannot
see “outside” of their root

* Found to be a weak security boundary, as
there are many ways to circumvent it

74

Control Groups (cgroups)

e Limit, account for, and isolate resource
usage of a collection of processes

— CPU
— Memory
— disk I/0
— network
— etc.

* Supported by the Linux kernel since 2008

75

Namespaces

* Groups of processes that cannot “see” resources in other
groups
— PID
(same PID can be used in different namespaces)

— Network
(multiple network stacks possible)

— User namespaces
(same UID can belong to different users in different
namespaces)

— Mount
— efc.

* How to make a new namespace?

— Ask the OS to put a process into a new namespace (i.e., system
calls)

76

cgroups + namespaces = containers

* By combining cgroups with namespaces we
can effectively isolate groups of processes
from one-another

— Docker
— LXC (Linux containers)
— etc.

* Remaining attack surface?
— The host’s system call interface

— Fairly big (> 330 system calls on modern Linux)

77

Virtual Machines

* Attack surface of containers might be to big

* Instead run entire copies of operating systems
(incl. kernels) in isolation -> Virtual Machines

* Hardware support makes it possible to run
multiple kernels on the same CPU
— 1 Virtual Machine Montior (VMM, Hypervisor)
— Multiple guest VMs

* Remaining attack surface, limited
communication channels between the guest

and the hypervisor

78

Shared Libraries

Most programs are dynamically linked
against shared libraries

— Collection of (related) object files

— Included into (linked) program as needed

— Form of code reuse

— Functions & data referenced through PLT, GOT

Interaction with VM copy-on-write
— Multiple processes share a single library copy

— Library pages mapped into multiple virtual address
spaces from single physical copy

Check binaries with 1dd

79

Shared Libraries

Static shared library
— Address binding at link-time
— Not very flexible when library changes
— Code is fast

Dynamic shared library
— Address binding at load-time
— Uses procedure linkage table (PLT) & global offset table (GOT)
— Code is slower (indirection) - but optimized
— Loading is slow (dynamic linker binds at run-time)
— Linux: .so Windows: .d11 files

PLT and GOT entries are popular attack targets
— More when discussing buffer overflows

80

Shared Libraries

$ 1dd /usr/bin/vim

linux-vdso.so.1 (Ox00007fffeclfe000)

libgtk-x11-2.0.50.0 => /usr/lib/x86_64-1linux-gnu/libgtk-x11-2.0.50.0
libgdk-x11-2.0.50.0 => /usr/lib/x86 64-linux-gnu/libgdk-x11-2.0.50.0
libgdk pixbuf-2.0.50.0 => /usr/lib/x86 64-linux-gnu/libgdk pixbuf-2.0.s50.0
libXt.so0.6 => /usr/1lib/x86 64-1linux-gnu/libXt.so.6 (©x00007fb0d8b0c0e0)
1libX11l.s0.6 => /usr/lib/x86 64-linux-gnu/libX11l.s0.6 (©x00007fb0d87c9000)
libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (©x00007fb0d84c8000)
libtinfo.so.5 => /1ib/x86 64-1linux-gnu/libtinfo.so.5 (©0x00007fb0d829d000)
libselinux.so.1 => /1ib/x86 64-linux-gnu/libselinux.so.1l (©x00007fb0d8079000)
libacl.so.1 => /1ib/x86 64-1linux-gnu/libacl.so.1 (©x00007fbod7e70000)
libgpm.so.2 => /usr/lib/x86 64-linux-gnu/libgpm.so.2 (©0x00007fb0d7c69000)
libdl.so0.2 => /1ib/x86_64-1inux-gnu/libdl.so.2 (©x00007fb0d7a65000)
liblua5.2.50.0 => /usr/lib/x86 64-1inux-gnu/liblua5.2.50.0

libperl.so0.5.20 => /usr/lib/x86 _64-linux-gnu/libperl.so.5.20

... 117 libraries total

81

Shared Libraries

Search paths
— Default /1ib, /usr/1ib
— Extend via /etc/1ld.so.conf[.d/*]
— Or, LD_LIBRARY_PATH (environment variable)

ELF linker also allows preloading
— Override system library with own version
— LD_PRELOAD environment variable
— Possible security hazard - How so?
— Now disabled for SUID programs

82

Race Conditions

* Race conditions can occur if programs depend on
(unguaranteed) sequence or timing of operations

— Often arise in multithreaded or distributed systems

 TOCTTOU (time of check to time of use)

— Security vulnerability resulting in changes in system state
between predicate evaluation and use of the predicate result

— Requires precise timing by the attacker, or use of algorithmic
complexity attacks (e.g., filesystem mazes)

 Common TOCTTOU examples
— Checking whether file can be accessed, then opening the file

— mktemp () race between checking existence of temporary file
and opening it

83

File Access TOCTTOU

Vulnerable code (setuid program)
1 if (access(“file”, R_OK)) {

2 exit(1);

3}

4 int fd = open(“file”, O RDONLY);

5 read(fd, buf, sizeof(buf));

Attack
symlink(“/etc/shadow”,”file”)
After program executed line 1 but before it executes line 4

84

Signals
Signal

— Simple form of interrupt

— Asynchronous notification

— Can happen anywhere for process in user space
— Used to deliver segfault, CTRL-C, etc.

— kill command

Signal handling
— Process can install signal handlers

— When no handler is present, default behavior
* Ignore or kill process

— Possible to catch all signals except SIGKILL (9)

85

SIGSEGV

SIGPIPE

SIGALRM
SIGSTOP
SIGKILL

SIGINT

Signhal Examples

Segmentation violation due to an invalid virtual
memory access

Process attempts to write to an unconnected pipe
or socket

[ssued when a timer elapses
Pauses execution of a process
Terminates execution, cannot be caught or ignored

Interrupts process, e.g., using CTRL-C

86

Signals

Easy to mishandle - security issues

— Code must be re-entrant

— Atomic modifications

— No updates to global data

— Beware of unsafe library/system calls

— Examples

wu-ftpd 2001, sendmail 2001/2006, stunnel 2003, ssh 2006

Secure signals

— Write handler as simple as possible

— Block signals in handler

87

Debugging

* UNIX provides the ptrace API for debugging
processes

— Allows programs to control execution of other
programs, read /write virtual memory (code and
data)

* Violates process isolation, so restrictions apply
— Must be superuser, or possess same UID

* Kernel records debugger as a special, second
tracing parent process
— Can only have one trace parent at any given time
— Can be used to implement a form of evasion

88

Debug Evasion

Linux debugger check
parent = getpid()
if (!(child = fork())) {
if (ptrace(PTRACE_ATTACH,parent,0® ,0) == -1)
//debugger already present for parent

Windows PEB debugger check
mov eax, fs:[Ox30]

mov eax, byte[eax+2]

test eax, eax

jne .detected debugger

89

Questions?

END

