Monitoring Programs

pid t waitpid(pid t pid, int* status, int options);

* wait*() family allows parent to check status of

children
— WIFEXITED, WEXITSTATUS
— WIFSIGNALED, WTERMSIG
— WIFSTOPPED, WSTOPSIG
* Performing wait*() is required to clean up

zombie processes
— Otherwise, terminated programs remain in 7Z state
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Process Hierarchy

#pstree -p

systemd(1)-+-/usr/bin/termin(15927)-+-bash(15934)---sudo(15936)---less(15938)
| |-bash(16221)-+-less(4553)

| | “-objdump(4552)

| |-bash(21840)---pstree(4589)

| |-bash(21925)---evince(24646)-+-{EvjobScheduler}(24663)

| | |-{dconf worker}(24653)

| | |-{gdbus}(24647)

| | "-{gmain}(24652)

| |-bash(22574)---ssh(4333)

| |-gnome-pty-helpe(15933)

| |-{gdbus}(15932)

| "-{gmain}(15935)

|-/usr/bin/termin(27360)-+-bash(12412)

| |-bash(21364)

| |-bash(27367)

| |-bash(27369)

| |-bash(29751)

| |-bash(30815)

| |-bash(30823) 56
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PATH Modification

$ echo $PATH
/home/pizzaman/bin:/usr/local/bin:/usr/bin:/bin
$ which python

/usr/bin/python

$ 1s -1 /usr/bin/python

lrwxrwxrwx 1 root root 9 Jul 11 19:22 /usr/bin/python ->
python2.7

* Environment variables set important shell parameters

e PATH contains colon-delimited set of directories to search for
commands

What happens if you can set PATH for a privileged program?

* Similar attack applies to HOME
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IFS Modification

$ for £ in blah® blahl blah2; do echo $f; done
blah® blahl blah2

$ IFS='b"

$ for £ in blaho blahl blah2; do echo $f; done
1lah® 1ahl 1ah2

* IFS (internal field separator) is used to parse
tokens

* Classic attack is to set IFS="/"

What happens when user executes /bin/1s
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preserve Attack

 /usr/lib/preserve was SUID root

e Called “/bin/mail” when vi crashed to
preserve modifications to the file

e Attack

1. Change IFSto “/”
. Createbinaslinkto /bin/sh

2
3. Kill vi
4. Profit!
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Shell Injection

Shell interprets number of special characters
— ; ... Separate distinct commands

— & ... Execute in the background

— | ... Pipe output as input to another command

— > ... Redirect output to a file

— # ... Comment

— $var ... Reference variable var

— X && y ...Ifx, theny

—x || y..xory
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Shell Injection

$ cat vuln.sh

#!1/bin/sh

cmd="1s $1"

sh -c "$cmd"

* Injecting special characters into commands
can modify intended behavior
— Applies to command line and C functions that

perform shell interpretation (e.g., system())

* Possible whenever unsanitized, untrusted
input flows to a shell invocation
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Shell Attacks

system(char *cmd)
— Invokes external commands via shell
— Executes cmd by calling /bin/sh -c cmd

— Can make binary program vulnerable to shell
attacks

— Sanitize user input!
popen(char *cmd, char *type)

— Forks a process, opens a pipe, and invokes shell
for cmd
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Startup File Injection

Shells typically source scripts at startup

— /etc/profile, /etc/bash.bashrc,
$HOME/ .bash _profile

—$% wc -1 ~/.bashrc
115 /home/pizzaman/.bashrc

Injecting commands in startup files can be
devastating

— How often do you inspect yours?
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Defending Against Shell Attacks

e Restricted shells
— Invoked using -r

— Disallows SHELL, PATH, ENV modifications,
chdir, ...

* Stripping or escaping special characters
—s/i\&[\|...//8

* Parsing arguments and avoiding shell
interpretation

— execve() instead of system()
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File Descriptor Attacks

SUID program opens file & exec process
— Sometimes under user control

On-execute flag

— If close-on-exec flag is not set (default), then new process
inherits file descriptor

— Avenue for attack

Linux Perl 5.6.0

— Perl getpwuid() leaves /etc/shadow open (June 2002)
— Problem for Apache with mod _perl

Defense: close prior to exec untrusted programs

— Manually
— Or, automatically using fcntl(fd, F_SETFD, FD_CLOEXEC)

70



Resource Limits

Linux systems have built-in mechanisms for
enforcing quotas

— Hard limits can never be exceeded
— Soft limits can be temporarily exceeded
— Can be defined per mount point

File system limits (quotas)

— Restricts max allocations of storage blocks and inodes
— man quota

Process limits

— Max # of child process, open file descriptors, etc.

Set with 1imits.conf, ulimit, setrlimit()
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$ ulimit -a

core file size

data seg size
scheduling priority
file size

pending signals

max locked memory
max memory size
open files

pipe size

POSIX message queues
real-time priority
stack size

cpu time

max user processes
virtual memory

file locks

ulimit -a

(blocks, -c)
(kbytes, -d)
(-e)
(blocks, -f)
(-1)
(kbytes, -1)
(kbytes, -m)
(-n)

(512 bytes, -p)

(bytes, -q)
(-r)

(kbytes, -s)
(seconds, -t)
(-u)

(kbytes, -v)
(-x)

%)
unlimited
%)
unlimited
62353

64
unlimited
65536

8

819200

%)

8192
unlimited
62353
unlimited
unlimited
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Resource Limits & Isolation

* Many security solutions are built on
concepts of isolation and limiting access to
resources

— Virtual memory (provides isolation of memory
between processes)

— chroot (isolation between “file systems”)

— Namespaces (isolation for many different system
aspects)

— Virtual machines (isolation between multiple OS
kernels)
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chroot

* Set a new root directory for a subtree of
processes

» Attempts to ensure that processes cannot
see “outside” of their root

* Found to be a weak security boundary, as
there are many ways to circumvent it
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Control Groups (cgroups)

e Limit, account for, and isolate resource
usage of a collection of processes

— CPU
— Memory
— disk I/0
— network
— etc.

* Supported by the Linux kernel since 2008
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Namespaces

* Groups of processes that cannot “see” resources in other
groups
— PID
(same PID can be used in different namespaces)

— Network
(multiple network stacks possible)

— User namespaces
(same UID can belong to different users in different
namespaces)

— Mount
— efc.

* How to make a new namespace?

— Ask the OS to put a process into a new namespace (i.e., system
calls)
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cgroups + namespaces = containers

* By combining cgroups with namespaces we
can effectively isolate groups of processes
from one-another

— Docker
— LXC (Linux containers)
— etc.

* Remaining attack surface?
— The host’s system call interface

— Fairly big (> 330 system calls on modern Linux)
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Virtual Machines

* Attack surface of containers might be to big

* Instead run entire copies of operating systems
(incl. kernels) in isolation -> Virtual Machines

* Hardware support makes it possible to run
multiple kernels on the same CPU
— 1 Virtual Machine Montior (VMM, Hypervisor)
— Multiple guest VMs

* Remaining attack surface, limited
communication channels between the guest

and the hypervisor
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Shared Libraries

Most programs are dynamically linked
against shared libraries

— Collection of (related) object files

— Included into (linked) program as needed

— Form of code reuse

— Functions & data referenced through PLT, GOT

Interaction with VM copy-on-write
— Multiple processes share a single library copy

— Library pages mapped into multiple virtual address
spaces from single physical copy

Check binaries with 1dd
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Shared Libraries

Static shared library
— Address binding at link-time
— Not very flexible when library changes
— Code is fast

Dynamic shared library
— Address binding at load-time
— Uses procedure linkage table (PLT) & global offset table (GOT)
— Code is slower (indirection) - but optimized
— Loading is slow (dynamic linker binds at run-time)
— Linux: .so Windows: .d11 files

PLT and GOT entries are popular attack targets
— More when discussing buffer overflows
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Shared Libraries

$ 1dd /usr/bin/vim

linux-vdso.so.1 (Ox00007fffeclfe000)

libgtk-x11-2.0.50.0 => /usr/lib/x86_64-1linux-gnu/libgtk-x11-2.0.50.0
libgdk-x11-2.0.50.0 => /usr/lib/x86 64-linux-gnu/libgdk-x11-2.0.50.0
libgdk pixbuf-2.0.50.0 => /usr/lib/x86 64-linux-gnu/libgdk pixbuf-2.0.s50.0
libXt.so0.6 => /usr/1lib/x86 64-1linux-gnu/libXt.so.6 (©x00007fb0d8b0c0e0)
1libX11l.s0.6 => /usr/lib/x86 64-linux-gnu/libX11l.s0.6 (©x00007fb0d87c9000)
libm.so.6 => /1ib/x86_64-1linux-gnu/libm.so.6 (©x00007fb0d84c8000)
libtinfo.so.5 => /1ib/x86 64-1linux-gnu/libtinfo.so.5 (©0x00007fb0d829d000)
libselinux.so.1 => /1ib/x86 64-linux-gnu/libselinux.so.1l (©x00007fb0d8079000)
libacl.so.1 => /1ib/x86 64-1linux-gnu/libacl.so.1 (©x00007fbod7e70000)
libgpm.so.2 => /usr/lib/x86 64-linux-gnu/libgpm.so.2 (©0x00007fb0d7c69000)
libdl.so0.2 => /1ib/x86_64-1inux-gnu/libdl.so.2 (©x00007fb0d7a65000)
liblua5.2.50.0 => /usr/lib/x86 64-1inux-gnu/liblua5.2.50.0

libperl.so0.5.20 => /usr/lib/x86 _64-linux-gnu/libperl.so.5.20

... 117 libraries total
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Shared Libraries

Search paths
— Default /1ib, /usr/1ib
— Extend via /etc/1ld.so.conf[.d/*]
— Or, LD_LIBRARY_PATH (environment variable)

ELF linker also allows preloading
— Override system library with own version
— LD_PRELOAD environment variable
— Possible security hazard - How so?
— Now disabled for SUID programs
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Race Conditions

* Race conditions can occur if programs depend on
(unguaranteed) sequence or timing of operations

— Often arise in multithreaded or distributed systems

 TOCTTOU (time of check to time of use)

— Security vulnerability resulting in changes in system state
between predicate evaluation and use of the predicate result

— Requires precise timing by the attacker, or use of algorithmic
complexity attacks (e.g., filesystem mazes)

 Common TOCTTOU examples
— Checking whether file can be accessed, then opening the file

— mktemp () race between checking existence of temporary file
and opening it
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File Access TOCTTOU

Vulnerable code (setuid program)
1 if (access(“file”, R_OK)) {

2 exit(1);

3}

4 int fd = open(“file”, O RDONLY);

5 read(fd, buf, sizeof(buf));

Attack
symlink(“/etc/shadow”,”file”)
After program executed line 1 but before it executes line 4
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Signals
Signal

— Simple form of interrupt

— Asynchronous notification

— Can happen anywhere for process in user space
— Used to deliver segfault, CTRL-C, etc.

— kill command

Signal handling
— Process can install signal handlers

— When no handler is present, default behavior
* Ignore or kill process

— Possible to catch all signals except SIGKILL (9)
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SIGSEGV

SIGPIPE

SIGALRM
SIGSTOP
SIGKILL

SIGINT

Signhal Examples

Segmentation violation due to an invalid virtual
memory access

Process attempts to write to an unconnected pipe
or socket

[ssued when a timer elapses
Pauses execution of a process
Terminates execution, cannot be caught or ignored

Interrupts process, e.g., using CTRL-C
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Signals

Easy to mishandle - security issues

— Code must be re-entrant

— Atomic modifications

— No updates to global data

— Beware of unsafe library/system calls

— Examples

wu-ftpd 2001, sendmail 2001/2006, stunnel 2003, ssh 2006

Secure signals

— Write handler as simple as possible

— Block signals in handler
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Debugging

* UNIX provides the ptrace API for debugging
processes

— Allows programs to control execution of other
programs, read /write virtual memory (code and
data)

* Violates process isolation, so restrictions apply
— Must be superuser, or possess same UID

* Kernel records debugger as a special, second
tracing parent process
— Can only have one trace parent at any given time
— Can be used to implement a form of evasion
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Debug Evasion

Linux debugger check
parent = getpid()
if (!(child = fork())) {
if (ptrace(PTRACE_ATTACH,parent,0® ,0) == -1)
//debugger already present for parent

Windows PEB debugger check
mov eax, fs:[Ox30]

mov eax, byte[eax+2]

test eax, eax

jne .detected debugger
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Questions?
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