
On a Typical Web Server

15

Web Application

Web
Server

Modules/Plugins

DB

OS

HTTP

Firewall

Web Server Scripting

• Allows easy implementation of functionality (also for
non-programmers – Think: Is this good?)

• Example scripting languages are Perl, Python, ASP,
JSP, PHP

• Scripts are installed on the Web server and return
HTML as output that is then sent to the client

• Template engines are often used to power web sites
– E.g., Cold Fusion, Cocoon, Zope

– These engines often support/use scripting languages

16

Web Application Example

Objective: Write an application that accepts
username and password and displays them

– First, we write HTML code and use forms

<html><body>
<form action=‚/scripts/login.pl‛ method=‚post‛>
Username: <input type=‚text‛ name=‚username‛>

Password: <input type=‚password‛ name=‚password‛>

<input type=‚submit‛ value=‚Login‛ name=‚login‛>
</form>
</body></html>

 17

Web Application Example

Second, here is the corresponding Perl script that
prints the username and password passed to it:

#!/usr/local/bin/perl

uses CGI;

$query = new CGI;

$username = $query->param(‚username‛);

$password = $query->param(‚password‛);

…

print ‚<html><body> Username: $username

Password: $password

</body></html>‚;

18

OWASP

The Open Web Application Security Project
(www.owasp.org)
– OWASP is dedicated to helping organizations

understand and improve the security of their web
applications and web services.

– The Top Ten vulnerability list was created to point
corporations and government agencies to the most
serious of these vulnerabilities.

– Web application security has become a hot topic as
companies race to make content and services
accessible though the web. At the same time,
attackers are turning their attention to the common
weaknesses created by application developers.

19

OWASP Top 10 (2007)

1 Injection Flaws (1) (1 in 2013, and still in 2017, #3 in 2021)
2 Broken Authentication and Session Management (2)
3 Sensitive Data Exposure (-)
4 XML External Entities (-)
5 Broken Access Control (-)
6 Security Misconfiguration (-)
7 Cross Site Scripting (XSS)

 (3)
8 Insecure Deserialization (-)
9 Using Components with Known Vulnerabilities (-)
10Insufficient Logging & Monitoring (-)

• Insecure Direct Object Reference (4)
• Cross Site Request Forgery (8)
• Information Leakage and Improper Error Handling

20

Later!

Common Root for Many Problems

• Web applications use input from HTTP
requests (and occasionally files) to determine
how to respond
– Attackers can tamper with any part of an HTTP

request, including the URL, query string, headers,
cookies, form fields, and hidden fields, to try to
bypass the site’s security mechanisms

– Common input tampering attempts include XSS, SQL
Injection, hidden field manipulation, buffer
overflows, cookie poisoning, remote file inclusion...

• Some sites attempt to protect themselves by
filtering known malicious input
– Problem: There are many different ways of encoding

information

21

Unvalidated Input

• A surprising number of web applications use
only client-side mechanisms to validate input
– Client side validation mechanisms are easily

bypassed, leaving the web application without any
protection against malicious parameters

• How to determine if you are vulnerable?
– Any part of an HTTP request that is used by a web

application without being carefully validated is
known as a “tainted” parameter

– The simplest way: to have a detailed code review,
searching for all the calls where information is
extracted from an HTTP request

22

Unvalidated Input

• How to protect yourself?
– Ensure all parameters are validated before they are used

– A centralized component or library is likely to be the most
effective … remember complete mediation?

• Parameters should be validated against a
“positive” specification that defines:
– Data type (string, integer, real, etc…); Allowed character set;

Minimum and maximum length; Whether null is allowed;
Whether the parameter is required or not; Whether
duplicates are allowed; Numeric range; Specific legal values
(enumeration); Specific patterns (regular expressions)

– Trying to specify negative specification (i.e., signature
matching) is bound to fail / be incomplete

23

Injection Flaws

“Injection flaws occur when an
application sends untrusted* data to
an interpreter”

--- OWASP

* usually means attacker-controlled

24

Injection Attacks Overview

• Many webapps invoke interpreters
– SQL

– Shell command

– Sendmail

– LDAP

– ...

• Interpreters execute the commands specified
by the parameters or input data
– If the parameters are under control of the user and

are not properly sanitized, the user can inject its
own commands in the interpreter

25

SQL Injection

26

SQL Injections

SQL injection is a particularly widespread and
dangerous form of injection attack that
consists of injecting SQL commands into the
database engine through an existing
application

27

Relational Databases

• A relational database contains one or more
relations (i.e., tables)

– Each table is identified by a name

– Each table has a fixed number of named and
typed columns

• Tables contain records (rows) with data

28

dthompson dthompson Thompson Daniel 3

qwerty adamt Taylor Adam 2

hello jsmith Smith John 1

Password Login LastName Name userID

Structured Query Language (SQL)

• SQL is a data manipulation language (DML)
to access databases and can
– Query the content of a database (SELECT)

– Modify data in a database:
• Insert add rows

• Update modify rows

• Delete remove rows

• SQL is standard (ANSI and ISO) but most
DBMS implement language extensions in
addition to the standard

29

SQL Data Definition Language (DDL)

• SQL DML operates on data in relations

• DDL defines and modifies the structure of
relations in the database
– {CREATE,ALTER,DROP} TABLE

– Assign types to columns
e.g., INT, CHAR, geography (ellipsoidal spatial)

– Default values

– Referential integrity

– Constraints (NOT NULL, UNIQUE, etc.)

• DDL and DML parsed by the same SQL engine

30

SQL – SELECT Definition
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

 * | expression [[AS] output_name] [, ...]

 [FROM from_item [, ...]]

 [WHERE condition]

 [GROUP BY expression [, ...]]

 [HAVING condition [, ...]]

 [WINDOW window_name AS (window_definition) [, ...]]

 [{ UNION | INTERSECT | EXCEPT } [ALL] select]

 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]

 [LIMIT { count | ALL }]

 [OFFSET start [ROW | ROWS]]

 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]

 (select) [AS] alias [(column_alias [, ...])]

 with_query_name [[AS] alias [(column_alias [, ...])]]

 function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] | column_definition [, ...])]

 function_name ([argument [, ...]]) AS (column_definition [, ...])

 from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

TABLE { [ONLY] table_name [*] | with_query_name }

31

SQL Example

To extract the last name of a user from the
previous table

32

mysql> SELECT LastName FROM users WHERE UserID = 1;
+----------------+
| LastName |
+----------------+
| Smith |
+----------------+
1 row in set (0.00 sec)

SQL Example

Extract information on user based on
username + password (e.g., to perform
authentication during login)

33

mysql> SELECT * FROM users WHERE login =‘jsmith‘ AND
password = ‘hello‘;
+--------+------+----------+--------+----------+
| UserID | Name | LastName | Login | Password |
+--------+------+----------+--------+----------+
| 1 | John | Smith | jsmith | hello |
+--------+------+----------+------- +----------+
1 row in set (0.00 sec)

SQL Injections

• To exploit a SQL injection flaw, the attacker
must find a parameter that the web application
uses to construct a database query

• By carefully embedding malicious SQL
commands into the content of the parameter,
the attacker can trick the web application into
forwarding a malicious query to the database

• The consequences are particularly damaging,
as an attacker can obtain, corrupt, or destroy
database contents

34

SQL Injections

• Not a DB or web server problem
It is a flaw in the web application!

– Many programmers are still not aware of this
problem

– Many of the tutorials and demo “templates” are
vulnerable

– Even worse, many of solutions posted on the
Internet are not good enough

35

Simple SQL Injection Example

Perl script looks up username and password
…

$query = new CGI;

$username = $query->param(‚username‛);

$password = $query->param(‚password‛);

…

$sql_command = ‚select * from users where
username=‘$username’ and password=‘$password’‛;

$sth = $dbh->prepare($sql_command)

…

37

No Validation!

Simple SQL Injection Example

• If the user enters a ‘ (single quote) as the password,
the SQL statement in the script would become:
– select * from users where login =‘ ‘ and
password = ‘‘‘

– An SQL error message would be generated

• If the user enters (injects): ‘ or login =‘jsmith as the
password, the SQL statement in the script would
become:
– select * from users where login =‘ ‘ and
password = ‘‘ or login = ‘jsmith‘

– Hence, a different SQL statement has been injected than
what was originally intended by the programmer!

38

Obtaining Information using Errors

• Errors returned from the application might
help the attacker (e.g., ASP – default behavior)
– Username: ' union select sum(id) from users--

 Microsoft OLE DB Provider for ODBC Drivers error '80040e14' [Microsoft][ODBC SQL
Server Driver][SQL Server]Column 'users.id' is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.

 /process_login.asp, line 35

• Make sure that you do not display unnecessary
debugging and error messages to users.

– For debugging, it is always better to use log files
(e.g., error log).

39

Some SQL Attack Examples

• select * …;
insert into user values(“user”,”h4x0r”);

– Attacker inserts a new user into the database

• Call “stored procedures” (e.g., in SQL Server)

– xp_cmdshell()  arbitrary command execution

– “bulk insert” statement to read any file on the server

– e-mail data to the attacker’s mail account

– Play around with the registry settings

• select *… ; drop table SensitiveData;

• Appending “;” character does not work for all databases.
Might depend on the driver (e.g., MySQL)

40

DEMO
Simple SQL Injection

41

Advanced SQL Injection

• Web apps often escape the ‘ and “ (e.g., in PHP)
– Will prevent most SQL injection attacks… but there

might still be vulnerabilities

• Database columns have types
– ‘ or “ characters not necessary (e.g., … where id=1)

• Attacker might still inject strings into a
database by using the char function (e.g., SQL
Server):
– insert into users

values(666,char(0x63)+char(0x65)…)

42

Blind SQL Injection

• Typical countermeasure: Don’t display error
messages. But, is this enough?
– No, your application may still be vulnerable to blind

SQL injection

• Example: Suppose there is a news site
– Press releases are accessed with

pressRelease.jsp?id=5
– An SQL query is created and sent to the database:
 select title, description FROM pressReleases where

id=5;
– Any error messages are smartly filtered by the

application

43

Blind SQL Injection

• How can we inject statements into the application
and exploit it?
– We do not receive feedback from the application so we

can use a trial-and-error approach

– First, we try to inject pressRelease.jsp?id=5 AND 1=1

– The SQL query is created and sent to the database:

select title, description FROM pressReleases where id=5
AND 1=1

– If there is an SQL injection vulnerability, the same press
release should be returned

– If input is validated, id=5 AND 1=1 should be treated as
value

44

Blind SQL Injection

• When testing for vulnerability, we know 1=1
is always true
– However, when we inject other statements, we

do not have any information
– What we know: If the same record is returned,

the statement must have been true
– For example, we can ask server if the current

user is “h4x0r”:
pressRelease.jsp?id=5 AND user_name()=‘h4x0r’
– By combining subqueries and functions, we can

ask more complex questions (e.g., extract the
name of a database character by character)

45

SQL Injection Solution

• Instead of string-building SQL, call stored
procedure (e.g., in Java):

CallableStatements cs =
dbConnection.prepareCall(“{call
getPressRelease(?)}”);

cs.setInt(1,Integer.parseInt(request.getParameter(
“id”)));

ResultSet rs = cs.executeQuery();

• In ASP.NET, there is a similar mechanism

46

Exploits Of A Mom

47

