
Cybersecurity – EC521
Memory Corruption

Manuel Egele
PHO 337

megele@bu.edu
Boston University

Slides from William Robertson @ NEU

Outline

Assembly Review

Vulnerabilities I

Vulnerabilities II

Defenses & Evasion of Defenses

Malware Analysis

2

Assembly Review

1. Correspondence between a (relatively) high-
level language (C) and assembly

2. System components
– CPU

– Memory

3. Instructions
– Formats

– Classes

– Control flow

4. Procedures

3

A Deep Topic

4

Compilers

int abs(int x) {
if (x < 0)
return –x;

return x;
}

Computers don’t execute source code (doh!)
– Instead, they operate on machine code
– Compilers translate code from a higher level to a

lower level
– Today: C  assembly  machine code

5

Compilers

6

Compiler

C
Language-

Specific
Front End

Language-
Neutral IR

Machine-
Specific

Back End

ASM
BIN

Assembly

Human-readable machine code
– Simple translation to machine code

We will focus on x86/x86_64
– (Externally) CISC architecture

– Instructions have side effects

Assembly syntaxes
– Intel: <mnemonic> <dst>, <src>

– AT&T: <mnemoic> <src>, <dst>

– Examples will be in Intel syntax

7

Compilers

int abs(int x) {

if (x < 0)

return –x;

return x;

}

C  assembly  machine code

8

Compilation (–O0 vs. –O3)

abs:

 push rbp

 mov rbp, rsp

 mov dword ptr [rbp - 8], edi

 cmp dword ptr [rbp - 8], 0

 jge .LBB0_2

 mov eax, 0

 sub eax, dword ptr [rbp - 8]

 mov dword ptr [rbp - 4], eax

 jmp .LBB0_3

.LBB0_2:

 mov eax, dword ptr [rbp - 8]

 mov dword ptr [rbp - 4], eax

.LBB0_3:

 mov eax, dword ptr [rbp - 4]

 pop rbp

 ret

abs:

 mov eax, edi

 neg eax

 cmovl eax, edi

 ret

Modern compilers are
relatively sophisticated

10

CPU and Memory

Von Neumann Architecture
– Co-mingled code and data in memory
– Shared bus for code and data

CPU has program counter, points to (next)
instruction
– Execution through repeated instruction cycles

(fetch -- decode -- execute)
– Usually pipelined in modern architectures

Instruction set architectures (ISAs) have
operational semantics
– Given an input state (registers, memory), will

produce a well-defined output state

12

CPU and Memory

CPU contains registers
– Program counter (rip)

– Stack pointer (rsp)

– Frame pointer (rbp)

– General purpose registers
• rax, rbx, rcx, rdx, rsi, rdi, r8-r15

– Contition codes (RFLAGS)
• Affected by arthmetic and logical operations

Memory stores code and data
– Byte-addressable array

13

Registers

Convention:
rax Accumulator
rbx Pointer to data
rcx Loop counter
rdx I/O operations
rdi Destination pointer (loops)
rsi Source pointer (loops)

14

rax – 64 bits
eax – 32 bits

ax – 16 bits

ah (8) al (8)

Flags

OF Overflow flag

DF Direction flag (loops)

SF Sign flag

ZF Zero flag

PF Parity flag

CF Carry flag

Bit vector of flags (RFLAGS)
– Automatically set and tested by instructions

– Many other fields

15

Executable File Format

Most common on Linux is ELF (man 5 elf)
– PE on Windows

Header
– Type (executable, library), architecture, offset of

segment and section headers, etc.

Segments
– Chunk of code, data necessary for execution
– Offset, size, type, virtual address

Sections
– Code, data, relocation info, symbols, debug info, etc.
– Offset, size, type

16

Structure of an ELF File

17

Memory Layout

Runtime loader is responsible for loading (usually)
multiple binary objects into virtual memory

– Executable

– Libraries

Heap
– Data segment for dynamic data

– Grows upwards, limit controlled by brk()

Stack
– Data segment for procedure-local data, control

information

– Grows downwards (on the x86 family)

18

Memory Layout

19

Instruction Components

Mnemonic Operands

nop empty

neg rax

add rax, 0x10

mov rax, rdx

mov rax, byte[rdx]

mov rax, dword[rdx+rcx*4]

jmp 0x08042860

jmp [rdi]

20

Operand Types

Literal
– Integer constant directly encoded into the

instruction

– e.g., mov rax, 0x0 (constant 0 moved into rax)

Register
– Contents of a named register

– e.g., mov rax, rdx (rdx is moved into rax)

Memory
– Memory reference

– e.g., mov rax, dword [rdx]

21

Memory References

Base Base of reference, register

Index Offset from base

Scale Constant that scales index from base

Disp. Base of reference, constant

Width Scales reference

22

Common Widths

byte Obvious

word 16 bits

dword 32 bits (double word)

qword 64 bits (quad word)

23

Memory References

For example, this C snippet
int data[8]
…
data[1] = 4;

might translate to
lea rax, [rbp-0x40]
mov rdx, 0x04
mov rcx, 0x01
mov dword [rax + rcx * 4], rdx

24

Instruction Classes

Instructions grouped into different classes
– Load/store

– Arithmetic

– Logic

– Comparison

– Control transfer

We’ll go through a few common examples for each
– Impossible to cover everything here

– Compile programs, disassemble the output or capture
assembly, and investigate yourself!

– RTFM! (read the fine manual)

25

Common Loads, Stores

Instruction Effect Description

mov y, x y ← x Move x to y

movsx y, x y ← SignEx(x) Move sign-extended x to y

movzx y, x y ← ZeroEx(x) Move zero-extended x to y

push x rsp ← rsp – 8 Decrement rsp by 8

Mem(rsp) ← x Store x on stack

pop x x ← Mem(rsp) Load top of stack in x

rsp ← rsp + 8 Increment rsp by 8

lea y, x y ← Addr(x) Store address of x to y

26

Endian-ness

The x86 family is a little-endian architecture

– Multi-byte values stored least-significant byte first

If you have a uint8_t* pointer to address x

– What is the value for x[0]? x[3]?

27

0x03 0x02 0x01 0x00

x x+1 x+2 x+3

0x00010203

Types and the Lack Thereof

Memory at this level: Just a chunk of bytes

– No primitive types, structs

Data can have multiple interpretations

– Signed or unsigned?

– Store a 32-bit value, read back a 16-bit value

– Overlapping loads, stores

28

Common Arithmetic

Instruction Effect Description

add y, x y ← y + x Add x to y

sub y, x y ← y – x Subtract x from y

mul x y ← rax × x Signed multiply of rax and x

rdx ← High(r) High bits stored in rdx

rax ← Low(r) Low bits stored in rax

div x r ←

 Divides rdx:rax by x

rdx ← Rem(r) Remainder stored in rdx

rax ← Quo(r) Quotient stored in rax

29

Common Logic

Instruction Effect Description

and y, x y ← y ˄ x Logical AND stored in y

or y, x y ← y ˅ x Logical OR stored in y

xor y, x y ← x ⊕ y Logical XOR stored in y

shl y, x y ← ShiftLeft(y, x) Shift y left by x bits

shr y, x y ← ShiftRight(y,x) Shift y right by x bits

sal x y ← SShiftLeft(y,x) Signed left shift

rol y, x y ← RotateLeft(y,x) Rotates y left by x bits

30

Comparison

Instruction Effect Description

test y, x t ← y ˄ x Performs logical AND

SF ← MSB(t) Sets SF if MSB set in result

ZF ← t ≟ 0 Sets ZF if result is 0

…

cmp y, x t ← y – x Performs signed subtraction

SF ← MSB(t) Sets SF if MSB set in result

ZF ← t ≟ 0 Sets ZF if result is 0

…

31

Control Transfers

Control transfers change control flow of programs
– Can be predicated on results of a previous comparison

(flag bits)

– Arithmetic, logic instructions also set flags (omitted
before for brevity)

Distinction between jumps and calls
– Jumps simply transfer control with no side effects

– Calls used to implement procedures

Distinction between direct and indirect transfers
(indirect also known as computed transfers)

– Direct transfers use relative offsets, indirect transfers are
absolute (through a register or memory reference)

32

