Cybersecurity — EC521
Memory Corruption

Manuel Egele
PHO 337
megele@bu.edu
Boston University

Slides from William Robertson @ NEU

Outline

Assembly Review
Vulnerabilities I
Vulnerabilities 11

Defenses & Evasion of Defenses
Malware Analysis

Assembly Review

1. Correspondence between a (relatively) high-
level language (C) and assembly
2. System components
— CPU
— Memory
3. Instructions
— Formats
— Classes
— Control flow

4. Procedures

A Deep Topic

Compilers

int abs(int x) {
if (x < 9)
return -x;
return x;

}

Computers don’t execute source code (doh!)
— Instead, they operate on machine code

— Compilers translate code from a higher level to a
lower level

— Today: C = assembly = machine code

Compilers

)

Language-
Specific
Front End

Compiler

Language-
Neutral IR

Machine-
Specific
Back End

ASM
BIN

Assembly

Human-readable machine code
— Simple translation to machine code
We will focus on x86 /x86_64
— (Externally) CISC architecture
— Instructions have side effects

Assembly syntaxes
— Intel: <mnemonic> <dst>, <src>
— AT&T: <mnemoic> <src>, <dst>
— Examples will be in Intel syntax

Compilers

int abs(int x) {
if (x < 9)
return -x;
return Xx;

}

C - assembly - machine code

Compilation (—OO0 vs. —03)

abs:
pushrbp
mov rbp, rsp
mov dword ptr [rbp
cmp dword ptr [rbp
jge .LBB@_2

mov eax, ©

sub eax, dword ptr

mov dword ptr [rbp

jmp .LBBO_3
.LBBO_2:

mov eax, dword ptr

mov dword ptr [rbp
.LBBO_3:

mov eax, dword ptr

pop rbp

ret

- 8], edi
- 8], ©

[rbp - 8]
- 4], eax

[rbp - 8]
- 4], eax

[rbp - 4]

abs:
mov eax, edi
neg eax
cmovl eax, edi
ret

Modern compilers are
relatively sophisticated

10

CPU and Memory

Von Neumann Architecture
— Co-mingled code and data in memory
— Shared bus for code and data

CPU has program counter, points to (next)
instruction

— Execution through repeated instruction cycles
(fetch -- decode -- execute)

— Usually pipelined in modern architectures

Instruction set architectures (ISAs) have
operational semantics

— Given an input state (registers, memory), will
produce a well-defined output state

12

CPU and Memory

CPU contains registers
— Program counter (rip)
— Stack pointer (rsp)
— Frame pointer (rbp)
— General purpose registers
* rax, rbx, rcx, rdx, rsi, rdi, r8-r15
— Contition codes (RFLAGS)
 Affected by arthmetic and logical operations
Memory stores code and data

— Byte-addressable array

13

Registers

eax — 32 bits

rax - 64 bits €

>

ah (8)| al (8)

Convention:
rax Accumulator
rbx Pointer to data
rcx Loop counter
rdx I/0 operations
rdi Destination pointer (loops)
rsi Source pointer (loops)

<€ >
ax — 16 bits

14

Flags

OF Overflow flag

DF Direction flag (loops)
SF Sign flag

ZF Zero flag

PF Parity flag

CF Carry flag

Bit vector of flags (RFLAGS)

— Automatically set and tested by instructions
— Many other fields

15

Executable File Format

Most common on Linux is ELF (man 5 elf)
— PE on Windows

Header

— Type (executable, library), architecture, offset of
segment and section headers, etc.

Segments
— Chunk of code, data necessary for execution
— Offset, size, type, virtual address

Sections
— Code, data, relocation info, symbols, debug info, etc.
— Offset, size, type

16

Structure of an ELF File

0x0

ELF Header

Segment Header

Section Header

Text (Code)

Data

Read-only Data

Strings

Symboaols

17

Memory Layout

Runtime loader is responsible for loading (usually)
multiple binary objects into virtual memory

— Executable
— Libraries

Heap

— Data segment for dynamic data
— Grows upwards, limit controlled by brk()

Stack

— Data segment for procedure-local data, control
information

— Grows downwards (on the x86 family)

18

Memory Layout

0x0

Program Stack

T

Library Data

Library Code

!

Heap

Program Data

Program Code

19

Instruction Components

Mnemonic Operands

nop empty

heg rax

add rax, 0x10

mov rax, rdx

mov rax, byte|rdx]

mov rax, dword[rdx+rcx*4|
jmp 0x08042860

jmp [rdi]

Operand Types

Literal

— Integer constant directly encoded into the
instruction

— e.g., mov rax, 0x0 (constant 0 moved into rax)
Register

— Contents of a named register

— e.g., mov rax, rdx (rdxis moved into rax)
Memory

— Memory reference
— e.g., mov rax, dword [rdx]

21

Memory References

Width Base Scale
— — 4
mov dword 0x00[rax+rcxx4], rdx
(. v _/ —

Displacement Index

Base Base of reference, register

Index Offset from base
Scale Constant that scales index from base
Disp. Base of reference, constant

Width Scales reference

22

Common Widths

Width Base Scale
— — 4
mov dword 0x00[rax+rcxx4], rdx
(. v _/ —

Displacement Index

byte Obvious
word 16 bits

dword 32 bits (double word)
qword 64 bits (quad word)

23

Memory References

For example, this C snippet
int data[8]

data[l] = 4;

might translate to

lea rax, [rbp-0x40]

mov rdx, 0x04

mov rcx, 0x9l

mov dword [rax + rcx * 4], rdx

24

Instruction Classes

Instructions grouped into different classes
— Load/store
— Arithmetic
— Logic
— Comparison
— Control transfer

We'll go through a few common examples for each
— Impossible to cover everything here

— Compile programs, disassemble the output or capture
assembly, and investigate yourself!

— RTFM! (read the fine manual)

25

Common Loads, Stores

Instruction Effect Description

mov y, X y < X Move xtoy

movsx Yy, X y <« SignEx(x) Move sign-extended xtoy

movzx y, X y« ZeroEx(x) Move zero-extended xtoy

push x rsp < rsp-8 Decrementrsp by 8
Mem(rsp) < x Store x on stack

pop X X < Mem(rsp) Load top of stackin x
rsp«<rsp+8 Incrementrsp by 8

lea y, X y <« Addr(x) Store address of xto y

26

Endian-ness

0x00010203

\ 4

0x03

Ox02

Ox01

0x00

X

The x86 family is a little-endian architecture
— Multi-byte values stored least-significant byte first

If you have a uint8 t* pointer to address x

X+1 X+2 X+3

— What is the value for x[0]? x[3]?

27

Types and the Lack Thereof

Memory at this level: Just a chunk of bytes
— No primitive types, structs

Data can have multiple interpretations
— Signed or unsigned?
— Store a 32-bit value, read back a 16-bit value

— Overlapping loads, stores

28

Common Arithmetic

Instruction Effect Description

add y, x y—y+X Addxtoy

sub y, x y—y-X Subtract x from y

mul x y < rax x X Signed multiply of rax and x
rdx < High(r) High bits stored in rdx
rax < Low(r) Low bits stored in rax

div x Divides rdx:rax by x

e —

rdx < Rem(r)

rax < Quo(r)

Remainder stored in rdx

Quotient stored in rax

29

Common Logic

Instruction Effect Description

and y, X y«yAX Logical AND stored iny
or y, X y<yVX Logical OR stored iny
xor vy, y—x@Py Logical XOR stored iny
shl vy, y < ShiftLeft(y, x) Shift y left by x bits

shr vy, y < ShiftRight(y,x) Shift y right by x bits
sal x y < SShiftLeft(y,x) Signed left shift

rol y, y < RotateLeft(y,x) Rotates y left by x bits

30

Comparison

Instruction Effect Description

test y, X teyax Performs logical AND
SF < MSB(t) Sets SF if MSB set in result
IF<t=0 Sets ZF if resultis O

cmp y, X tey-x Performs signed subtraction
SF <« MSB(t) Sets SF if MSB set in result
IF<t=0 Sets ZF if result is 0

31

Control Transfers

Control transfers change control flow of programs

— Can be predicated on results of a previous comparison
(flag bits)

— Arithmetic, logic instructions also set flags (omitted
before for brevity)

Distinction between jumps and calls
— Jumps simply transfer control with no side effects
— Calls used to implement procedures

Distinction between direct and indirect transfers
(indirect also known as computed transfers)

— Direct transfers use relative offsets, indirect transfers are
absolute (through a register or memory reference)

32

