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Assembly Review 

1. Correspondence between a (relatively) high-
level language (C) and assembly 

2. System components 
– CPU 

– Memory 

3. Instructions 
– Formats 

– Classes 

– Control flow 

4. Procedures 
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A Deep Topic 
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Compilers 

int abs(int x) { 
if (x < 0) 
return –x; 

return x; 
} 
 
Computers don’t execute source code (doh!) 
– Instead, they operate on machine code 
– Compilers translate code from a higher level to a 

lower level 
– Today: C  assembly  machine code 
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Compilers 
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Assembly 

Human-readable machine code 
– Simple translation to machine code 

We will focus on x86/x86_64 
– (Externally) CISC architecture 

– Instructions have side effects 

Assembly syntaxes 
– Intel: <mnemonic> <dst>, <src> 

– AT&T: <mnemoic> <src>, <dst> 

– Examples will be in Intel syntax 
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Compilers 

int abs(int x) { 

if (x < 0) 

return –x; 

return x; 

} 

 

C  assembly  machine code 
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Compilation (–O0 vs. –O3) 

abs: 

 push rbp 

 mov rbp, rsp 

 mov dword ptr [rbp - 8], edi 

 cmp dword ptr [rbp - 8], 0 

 jge .LBB0_2 

 

 mov eax, 0 

 sub eax, dword ptr [rbp - 8] 

 mov dword ptr [rbp - 4], eax 

 jmp .LBB0_3 

.LBB0_2: 

 mov eax, dword ptr [rbp - 8] 

 mov dword ptr [rbp - 4], eax 

.LBB0_3: 

 mov eax, dword ptr [rbp - 4] 

 pop rbp 

 ret 

abs: 

 mov eax, edi 

 neg eax 

 cmovl eax, edi 

 ret 

Modern compilers are 
relatively sophisticated 
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CPU and Memory 

Von Neumann Architecture 
– Co-mingled code and data in memory 
– Shared bus for code and data 

CPU has program counter, points to (next) 
instruction 
– Execution through repeated instruction cycles 

(fetch -- decode -- execute)  
– Usually pipelined in modern architectures 

Instruction set architectures (ISAs) have 
operational semantics 
– Given an input state (registers, memory), will 

produce a well-defined output state 
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CPU and Memory 

CPU contains registers 
– Program counter (rip) 

– Stack pointer (rsp) 

– Frame pointer (rbp) 

– General purpose registers 
• rax, rbx, rcx, rdx, rsi, rdi, r8-r15 

– Contition codes (RFLAGS) 
• Affected by arthmetic and logical operations 

Memory stores code and data 
– Byte-addressable array 
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Registers 

 
 
 
 
Convention: 
rax Accumulator 
rbx Pointer to data 
rcx Loop counter 
rdx I/O operations 
rdi Destination pointer (loops) 
rsi Source pointer (loops) 
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rax – 64 bits 
eax – 32 bits 

ax – 16 bits 

ah (8) al (8) 



Flags 

OF Overflow flag 

DF Direction flag (loops) 

SF Sign flag 

ZF Zero flag 

PF Parity flag 

CF Carry flag 

 

Bit vector of flags (RFLAGS) 
– Automatically set and tested by instructions 

– Many other fields 
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Executable File Format 

Most common on Linux is ELF (man 5 elf) 
– PE on Windows 

Header 
– Type (executable, library), architecture, offset of 

segment and section headers, etc. 

Segments 
– Chunk of code, data necessary for execution 
– Offset, size, type, virtual address 

Sections 
– Code, data, relocation info, symbols, debug info, etc. 
– Offset, size, type 
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Structure of an ELF File 
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Memory Layout 

Runtime loader is responsible for loading (usually) 
multiple binary objects into virtual memory 

– Executable 

– Libraries 

Heap 
– Data segment for dynamic data 

– Grows upwards, limit controlled by brk() 

Stack 
– Data segment for procedure-local data, control 

information 

– Grows downwards (on the x86 family) 

18 



Memory Layout 
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Instruction Components 

Mnemonic Operands 

nop empty 

neg rax 

add rax, 0x10 

mov rax, rdx 

mov rax, byte[rdx] 

mov rax, dword[rdx+rcx*4] 

jmp 0x08042860 

jmp [rdi] 
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Operand Types 

Literal 
– Integer constant directly encoded into the 

instruction 

– e.g., mov rax, 0x0 (constant 0 moved into rax) 

Register 
– Contents of a named register 

– e.g., mov rax, rdx (rdx is moved into rax) 

Memory 
– Memory reference 

– e.g., mov rax, dword [rdx] 
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Memory References 

Base Base of reference, register 

Index Offset from base 

Scale Constant that scales index from base 

Disp. Base of reference, constant 

Width Scales reference 
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Common Widths 

byte Obvious 

word 16 bits 

dword 32 bits (double word) 

qword 64 bits (quad word) 
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Memory References 

For example, this C snippet 
int data[8] 
… 
data[1] = 4; 

 
might translate to 
lea rax, [rbp-0x40] 
mov rdx, 0x04 
mov rcx, 0x01 
mov dword [rax + rcx * 4], rdx 
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Instruction Classes 

Instructions grouped into different classes 
– Load/store 

– Arithmetic 

– Logic 

– Comparison 

– Control transfer 

We’ll go through a few common examples for each 
– Impossible to cover everything here 

– Compile programs, disassemble the output or capture 
assembly, and investigate yourself! 

– RTFM! (read the fine manual) 
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Common Loads, Stores 

Instruction Effect Description 

mov y, x y ← x Move x to y 

movsx y, x y ← SignEx(x) Move sign-extended x to y 

movzx y, x y ← ZeroEx(x) Move zero-extended x to y 

push x rsp ← rsp – 8 Decrement rsp by 8 

Mem(rsp) ← x Store x on stack 

pop x x ← Mem(rsp) Load top of stack in x 

rsp ← rsp + 8 Increment rsp by 8 

lea y, x y ← Addr(x) Store address of x to y 
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Endian-ness 

The x86 family is a little-endian architecture 

– Multi-byte values stored least-significant byte first 

If you have a uint8_t* pointer to address x 

– What is the value for x[0]? x[3]? 
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0x03 0x02 0x01 0x00 

x x+1 x+2 x+3 

0x00010203 



Types and the Lack Thereof 

 

Memory at this level: Just a chunk of bytes 

– No primitive types, structs 

 

Data can have multiple interpretations 

– Signed or unsigned? 

– Store a 32-bit value, read back a 16-bit value 

– Overlapping loads, stores 
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Common Arithmetic 

Instruction Effect Description 

add y, x y ← y + x Add x to y 

sub y, x y ← y – x Subtract x from y 

mul x y ← rax × x Signed multiply of rax and x 

rdx ← High(r) High bits stored in rdx 

rax ← Low(r) Low bits stored in rax 

div x r ← 
    

 Divides rdx:rax by x 

rdx ← Rem(r) Remainder stored in rdx 

rax ← Quo(r) Quotient stored in rax 
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Common Logic 

Instruction Effect Description 

and y, x y ← y ˄ x Logical AND stored in y 

or y, x y ← y ˅ x Logical OR stored in y 

xor y, x y ← x ⊕ y Logical XOR stored in y 

shl y, x y ← ShiftLeft(y, x) Shift y left by x bits 

shr y, x y ← ShiftRight(y,x) Shift y right by x bits 

sal x y ← SShiftLeft(y,x) Signed left shift 

rol y, x y ← RotateLeft(y,x) Rotates y left by x bits 
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Comparison 

Instruction Effect Description 

test y, x t ← y ˄ x Performs logical AND 

SF ← MSB(t) Sets SF if MSB set in result 

ZF ← t ≟ 0 Sets ZF if result is 0 

… 

cmp y, x t ← y – x Performs signed subtraction 

SF ← MSB(t) Sets SF if MSB set in result 

ZF ← t ≟ 0 Sets ZF if result is 0 

… 
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Control Transfers 

Control transfers change control flow of programs 
– Can be predicated on results of a previous comparison 

(flag bits) 

– Arithmetic, logic instructions also set flags (omitted 
before for brevity) 

Distinction between jumps and calls 
– Jumps simply transfer control with no side effects 

– Calls used to implement procedures 

Distinction between direct and indirect transfers 
(indirect also known as computed transfers) 

– Direct transfers use relative offsets, indirect transfers are 
absolute (through a register or memory reference) 
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