
News From the Field

• Anduril, (fairly) new & huge defense contractor
(drones, etc.) …

• Palantir, BigData outfit (e.g., for spy agencies)

• US Army CTO on the new Battlefield
Communications Network

32

“fundamental security” problems & vulns, and should be
treated as “very high risk”

"We cannot control who sees what, we cannot see what users

are doing, and we cannot verify that the software itself is
secure," the memo says.

Source: reuters.com

News From the Field

33

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or
operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

News From the Field

34

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or
operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

News From the Field

35

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or
operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

Ambient Authority! No separation of
privilege. Hence, impossible to

approximate the principle of least
privilege.

Clear indication that security is an

afterthought.

No logging -> Audit not
possible.

No compromise
recording -> forensics

will be very challenging

Control Transfers

Control transfers change control flow of programs
– Can be predicated on results of a previous comparison

(flag bits)

– Arithmetic, logic instructions also set flags (omitted
before for brevity)

Distinction between jumps and calls
– Jumps simply transfer control with no side effects

– Calls used to implement procedures

Distinction between direct and indirect transfers
(indirect also known as computed transfers)

– Direct transfers use relative offsets, indirect transfers are
absolute (through a register or memory reference)

36

Instruction Side Effects

Described in the Intel Programmers Manual

– Human readable text

– Hard to parse/understand for computer programs

– Sometimes incomplete

Use the BAP (Binary Analysis Platform)

– BAP features the BAP intermediate language (BIL)

– Make all side effects explicit

– Supports most x86/x86_64 instructions

– Lacks support for some “obscure” SSE instructions

37

BIL Example

38

Control Transfers (Part I)

Instruction Condition Description

jmp x unconditional Direct or indirect jump

je/jz x ZF Jump if equal

jne/jnz x ┐ZF Jump if not equal

jl x SF ⊕ OF Jump if less (signed)

jle x (SF ⊕ OF) ˅ ZF Jump if less or equal

jg x ┐(SF ⊕ OF) ˄ ┐ ZF Jump if greater (signed)

jb x CF Jump if below (unsigned)

ja x ┐CF ˄ ┐ZF Jump if above (unsigned)

js x SF Jump if negative

39

Procedures

int f(int x) {return x + 1; }
int g(int x) {return f(x); }
int h(int x) {return f(x *2); }

Procedures (functions) are intrinsically
linked to the stack
– Provides space for local variables
– Records where to return to
– Used to pass arguments (sometimes)

Implemented using stack frames
– Also known as activation records

40

Control Transfers (Part II)

Instruction Effect Description

call x rsp ← rsp - 8 Decrement rsp by 8

Mem(rsp) ← Succ(rip) Store successor

rip ← Addr(x) Jump to address

ret rip ← Mem(rsp) Pop successor into rip

rsp ← rsp + 8 Increment rsp by 8

41

Stack Frame

42

Stack Frame

43

Stack Frame

44

Stack Frame

45

Stack Frame

46

Stack Frame

47

Stack Frame

48

Stack Frame

49

Stack Frame

50

Procedure Arguments

Standards (calling conventions) exist for
argument passing
– Specify where arguments are passed (registers, stack)

– Specify the caller and callee’s responsibilities
• Who deallocates argument space on the stack?

• Which registers can be clobbered, and who must save
them?

Why do we need standards?
– There are many ways to pass arguments

– How would code compiled by different developers and
toolchains interoperate?

51

Calling Conventions

We often speak of callers and callees
– Caller: Code that invokes a procedure

– Callee: Procedure invoked by another function

Conventions must specify how registers must
be dealt with
– Could always save them, but that is inefficient

(why?)

– Usually, some registers can be overwritten
(clobbered), others cannot

– Registers that can be clobbered: caller saved

– Registers that must not be clobbered: callee saved

52

cdecl

We’ve been concentrating on x86_64, but cdecl is
important to know

– Linux 32 bit calling convention

Arguments
– Passed on the stack

– Pushed right to left (reverse order)

Registers
– eax, edx, ecx are caller saved

– Remainder are callee saved

Return value in eax

Caller deallocates arguments on stack after return

53

stdcall

stdcall_fn:

 …

 pop ebp

 ret 0x10 ; return with an operand

– Calling convention used by the Win32 API

– Almost identical to cdecl

– But, callee deallocates arguments on the stack
• Can you think of a reason why this is better or worse

then cdecl? (Hint: printf())

54

SysV AMD64 ABI

x86_64 calling convention used on Linux,
Solaris, FreeBSD, Mac OS X

– This is what you’ll see most often in this course

First six arguments passed in registers

– rdi, rsi, rdx, rcx, r8, r9

• Except syscalls, rcx → r10

– Additional arguments spill to stack

Return value in rax

55

SysV AMD64 ABI Example
int auth(const char * user) {

 size_t i;

 char buf[16];

 strncpy(buf, user, sizeof (buf));

auth:

 push rbp ; save previous frame pointer

 mov rbp, rsp ; set new frame pointer

 sub rsp, 0x30 ; allocate space for locals (i, buf)

 movabs rdx, 0x10 ; move sizeof(buf) to rdx

 lea rax, [rbp-0x20] ; get the address of buf on the stack

 mov qword [rbp-0x08], rdi ; move user pointer into stack

 mov rsi, qword [rbp-0x08] ; move user pointer back into rsi

 mov rdi, rax ; move buf into rdi

 call strncpy ; call strncpy(rdi, rsi, rdx)

 ...

57

Writing in Assembly

> yasm -- version

yasm 1.3.0

• Ok, enough review, let’s write a program

• In keeping with the slides, we’ll use an Intel
syntax assembler called yasm
– nasm is equivalent for this course

– Feel free to use gas if you can’t stand Intel syntax

• Let’s write the simplest possible program
– Immediately exit with status code 0

59

Hello World in Assembly

bits 64 ; we are writing a 64-bit program

section .text ; we will place this in the .text (code) section

extern _exit ; we are referencing an external function (exit)

 ; libc functions are prefixed with ‘_’

global _start ; declare _start as global symbol

 ; this preserves a symbol table entry

_start: ; _start is the default ELF entry point

 mov rdi, 0x00 ; zero out rdi, our first argument

 call _exit ; call exit(rdi=0)

 int3 ; raise a breakpoint trap if we get here

 ; (we should never get here)

60

Assembling and Linking

> yasm –f elf64 –o exit.o exit.asm

> ld –o exit exit.o –lc

> /lib/ld-2.18.so ./exit

> echo $?

0

1. We first assemble the program to an object file exit.o

2. We link an ELF exe against libc

3. We run it using a given runtime loader

– You might need to specify a different path

– Or, you might not need to specify it on your system

4. It returns 0!

61

Disassembly

Disassembling is the process of recovering
assembly from machine code
– Not to be confused with decompilation!

– Requires knowledge of binary format and ISA

Distinction between linear sweep and
recursive descent disassembly
– Linear sweep begins at an address and continues

sequentially until the buffer is exhausted

– Recursive descent disassembly begins at an address
and follows program control flow, discovering all
reachable code

62

