News From the Field

* Anduril, (fairly) new & huge defense contractor
(drones, etc.) ...

 Palantir, BigData outfit (e.g., for spy agencies)

* US Army CTO on the new Battlefield
Communications Network

“fundamental security” problems & vulns, and should be
treated as “very high risk”

"We cannot control who sees what, we cannot see what users
are doing, and we cannot verify that the software itself is

secure,” the memo says.

Source: reuters.com

32

News From the Field

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or

operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

33

News From the Field

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or

operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

34

News From the Field

The memo said the system allows any authorized user to access
all applications and data regardless of their clearance level or
operational need. As a result, "Any user can potentially access
and misuse sensitive" classified information, the memo states,
with no logging to track their actions.

Ambient Authority! No separation of
No logging -> Audit not privilege. Hence, impossible to
possible. approximate the principle of least
No compromise privilege.
recording -> forensics
will be very challenging Clear indication that security is an
afterthought.

Control Transfers

Control transfers change control flow of programs

— Can be predicated on results of a previous comparison
(flag bits)

— Arithmetic, logic instructions also set flags (omitted
before for brevity)

Distinction between jumps and calls
— Jumps simply transfer control with no side effects
— Calls used to implement procedures

Distinction between direct and indirect transfers
(indirect also known as computed transfers)

— Direct transfers use relative offsets, indirect transfers are
absolute (through a register or memory reference)

36

Instruction Side Effects

Described in the Intel Programmers Manual
— Human readable text
— Hard to parse/understand for computer programs
— Sometimes incomplete

Use the BAP (Binary Analysis Platform)
— BAP features the BAP intermediate language (BIL)
— Make all side effects explicit
— Supports most x86/x86_64 instructions
— Lacks support for some “obscure” SSE instructions

37

BIL Example

_/ BAP: Binary An... x | #

€ @bap.ece.cmu.edu

M

»

Binary Analysis Platform

Home Meet BAP Documentation Support Download Links Credits

B L T e e i I L L I R T L

binary will do.

addr 0x0 @asm "add %Srax,%srbx"
label pc 0x0
T tl:u64 = R RBX:ub4

T t2:u64 = R_RAX:u64

R_RBX:ub64 = R RBX:ub4 + T t2:ubd

R _CF:bool = R RBX:ub4 < T _tl:ub4d

R _OF:bool = high:bool((T_tl:u64 ™~ ~T t2:u64) & (T_tl:u64 ~ R RBX:ub64
))

R _AF:bool = 0x10:u64 == (0x10:u64 & (R RBX:u64 ~ T tl:u64 ~ T t2:ubd
))

R PF:bool =

~low:bool(let T acc:ub4 := R RBX:u64 >> 4:u64 ™~ R RBX:u64 in
let T acc:ubd4 := T acc:ubd >> 2:u64 ~ T acc:ub4 in
T acc:ubd4 >> 1l:u64 ~ T acc:ub4d)

high:bool(R _RBX:u64)

0:ub4 == R RBX:ub4

R SF:bool
R ZF:bool

BIL code for add %rax, %rbx

38

Control Transfers (Part 1)

Instruction Condition Description

jmp X unconditional Direct or indirect jump
je/jz x LF Jump if equal

jne/jnz x - ZF Jump if not equal

jl X SF & OF Jump if less (signed)

jle x (SF & OF) v ZF Jump if less or equal

jg X 7 (SF @ OF) Aq ZF Jump if greater (signed)
jb X CF Jump if below (unsigned)
ja X 71CF A ZF Jump if above (unsigned)
js X SF Jump if negative

39

Procedures

int f(int x) {return x + 1; }
int g(int x) {return f(x); }
int h(int x) {return f(x *2); }

Procedures (functions) are intrinsically
linked to the stack

— Provides space for local variables

— Records where to return to

— Used to pass arguments (sometimes)
Implemented using stack frames

— Also known as activation records

40

Control Transfers (Part Il)

Instruction Effect Description

call x rsp < rsp - 8 Decrement rsp by 8
Mem(rsp) < Succ(rip) Store successor
rip « Addr(x) Jump to address

ret rip « Mem(rsp) Pop successor into rip

rsp < rsp + 8 Increment rsp by 8

41

rbp —»

rsp——=»

Saved rip

Saved rbp

i

buf

Scratch space

Stack Frame

Control
Info

- Locals

W 00~ v n B W=

int auth(const charx user) {

size t 1;

char buf[16];

strncpy(buf, user, sizeof(buf));

buf[sizeof(buf) - 1] = "\0’;

for (i = 9; 1 < sizeof(buf); i++)
buf[i] ~= 0xe5;

return !'memcmp(buf, "secret”, 6);

42

rbp —»

rsp——=s

Saved rip

Saved rbp

i

buf

Scratch space

Stack Frame

Control
Info

Locals

auth:

mov rdi, rax
call strncpy
mov byte [rbp-0x11], 0x00

strncpy:
push rbp
mov rbp, rsp
sub rsp, 0x30

add rsp, 0x30

pop rbp
ret

43

Stack Frame

Saved rip ontrol
Saved rbp C'"fg | 1 auth:
o i 2 -
3 mov rdi, rax
but tocals 4 call strncpy
5 mov byte [rbp-0x11], 0x00
Scratch space j e
. Saved rip g strncpy:
T 9 push rbp
10 mov rbp, rsp
11 sub rsp, 0x30
12 "
13 add rsp, 0x30
14 pop rbp
15 ret

Stack Frame

Savedrip Control
Saved rbp Info 1 auth:
rbp_h i 2 [I B |
3 mov rdi, rax
buf tocals 4 call strncpy
5 mov byte [rbp-0x11], 0x00
Scratch space i "t
Saved rip contol & StErncpy:
> Saved rbp Info ¢ push rbp
10 mov rbp, rsp
11 sub rsp, 0x30
12 " aa
13 add rsp, 0x30
14 pop rbp
15 ret

Saved rip

Saved rbp

i

buf

Scratch space

Saved rip

Saved rbp

)

Stack Frame

Control
Info

Locals

Control
Info

auth:

mov rdi, rax
call strncpy
mov byte [rbp-0x11], 0x00

strncpy:
push rbp
mov rbp, rsp
sub rsp, 0x30

add rsp, 0x30

pop rbp
ret

46

Stack Frame

Saved rip Control
Saved rbp Info 1 auth:
i 2 “us
3 mov rdi, rax
but tocals 4 call strncpy
5 mov byte [rbp-0x11], 0x00
Scratch space : e
Saved rip control 8 STrncpy:
bp —- Saved rbp Info g push rbp
10 mov rbp, rsp
Locals 11 sub rsp, Ax30
]2 [I
Scratch space 13 add rgpf @)(3@
rsp— 14 pop rbp
15 ret

Stack Frame

Saved rip

Saved rbp C?':}E)ml 1 auth:
i 2 "
3 mov rdi, rax
buf Locals 4 call strncpy
5 mov byte [rbp-0x11], 0x00
6 "
Scratch space ,
Saved rip control 8 Strncpy:
Saved rbp Info 9 pUSh rbp
10 mov rbp, rsp
11 sub rsp, 0x30
12 "
13 add rsp, 0x30
14 pop rbp
15 ret

Stack Frame

Saved rip Control

Saved rbp Info

auth:

rbp —»

i

mov rdi, rax
call strncpy
mov byte [rbp-0x11], 0x00

Locals
buf

Scratch space

strncpy:
push rbp
mov rbp, rsp
sub rsp, 0x30

Saved rip
rsp—-

WO oo N Oy i B W =

— o —
N = O

add rsp, 0x30

pop rbp
ret

— e —
oA W

rbp —»

rsp——>ms

Saved rip

Saved rbp

i

buf

Scratch space

Stack Frame

Control
Info

Locals

W00 < Ov b bW N —

10
11
12
13
14
15

auth:

mov rdi, rax
call strncpy
mov byte [rbp-0x11], 0x00

strncpy:
push rbp
mov rbp, rsp
sub rsp, 0x30

add rsp, 0x30

pop rbp
ret

50

Procedure Arguments

Standards (calling conventions) exist for
argument passing
— Specify where arguments are passed (registers, stack)

— Specify the caller and callee’s responsibilities
 Who deallocates argument space on the stack?

 Which registers can be clobbered, and who must save
them?

Why do we need standards?
— There are many ways to pass arguments

— How would code compiled by different developers and
toolchains interoperate?

51

Calling Conventions

We often speak of callers and callees
— Caller: Code that invokes a procedure
— Callee: Procedure invoked by another function

Conventions must specify how registers must
be dealt with

— Could always save them, but that is inefficient
(why?)

— Usually, some registers can be overwritten
(clobbered), others cannot

— Registers that can be clobbered: caller saved

— Registers that must not be clobbered: callee saved

52

cdecl

We've been concentrating on x86_64, but cdecl is
important to know

— Linux 32 bit calling convention
Arguments

— Passed on the stack

— Pushed right to left (reverse order)
Registers

— eax, edx, ecx are caller saved

— Remainder are callee saved
Return value in eax

Caller deallocates arguments on stack after return

53

stdcall

stdcall fn:

pop ebp
ret 0x10 ; return with an operand

— Calling convention used by the Win32 API
— Almost identical to cdecl

— But, callee deallocates arguments on the stack

e Can you think of a reason why this is better or worse
then cdecl? (Hint: printf())

54

SysV AMDG64 ABI

x86_64 calling convention used on Linux,
Solaris, FreeBSD, Mac 0S X

— This is what you'll see most often in this course
First six arguments passed in registers
— rdi, rsi, rdx, rcx, r8, ro
* Except syscalls, rcx = r10

— Additional arguments spill to stack

Return value in rax

55

SysV AMDG64 ABI Example

int auth(const char * user) {

size t 1i;
char buf[16];

strncpy(buf, user, sizeof (buf));

auth:
push rbp
mov rbp, rsp
sub rsp, 0x30
movabs rdx, ©0x10
lea rax, [rbp-0x20]
mov gword [rbp-0x08], rdi
mov rsi, qword [rbp-0x08]
mov rdi, rax
call strncpy

; save previous frame pointer

; set new frame pointer

; allocate space for locals (i, buf)
; move sizeof(buf) to rdx

; get the address of buf on the stack
; move user pointer into stack

; move user pointer back into rsi

; move buf into rdi

; call strncpy(rdi, rsi, rdx)

57

Writing in Assembly

> yasm -- version
yasm 1.3.0

* Ok, enough review, let’s write a program

* In keeping with the slides, we’ll use an Intel
syntax assembler called yasm
— nasm is equivalent for this course
— Feel free to use gas if you can’t stand Intel syntax
* Let's write the simplest possible program
— Immediately exit with status code 0

59

Hello World in Assembly

bits 64
section .text

extern _exit

global start

_start:

mov rdi, Ox00 ;

call exit
int3

; we are writing a 64-bit program
; we will place this in the .text (code) section

; we are referencing an external function (exit)
; libc functions are prefixed with ¢’

; declare _start as global symbol
; this preserves a symbol table entry
_start is the default ELF entry point

zero out rdi, our first argument

; call exit(rdi=o0)

raise a breakpoint trap if we get here
(we should never get here)

60

Assembling and Linking

> yasm -t elf64 -o exit.o exit.asm
> 1d -0 exit exit.o -1c

> /1ib/1d-2.18.s0 ./exit

> echo $°?

(%]

1. We first assemble the program to an object file exit.o
2. We link an ELF exe against libc
3. We run it using a given runtime loader

— You might need to specify a different path

— Or, you might not need to specify it on your system
4. Itreturns 0!

61

Disassembly

Disassembling is the process of recovering
assembly from machine code

— Not to be confused with decompilation!

— Requires knowledge of binary format and ISA

Distinction between linear sweep and
recursive descent disassembly

— Linear sweep begins at an address and continues
sequentially until the buffer is exhausted

— Recursive descent disassembly begins at an address
and follows program control flow, discovering all
reachable code

62

